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[4.29]

Special instructions for invigilators: None

Information for candidates:

e V£ denotes the gradient of the function f. Note that V f is a column
vector.

e V?f denotes the Hessian matrix of the function f. Note that this is a
symmetric square matrix.
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[4.29]

t. Consider the function

(a)

(b)

flx) = a:% +z1z0 + (1 — z2)4.

Compute all stationary points of the function.
(Hint: obtain first (1 —29)% in terms of x| from the necessary conditions
of optimality.) 6]

Using second order sufficient conditions, classify the stationary points
determined in part (a), i.e. say which is a local minimum, or a local

maximum, or a saddle point. 6]
Consider the point p = (0,0) and the direction d = _; . Using the
definition of a descent direction, show that d is a descent direction for f
at p. [4]
Perform an exact line search along the direction d = | 3 starting at
p = (0,0). Show that the point obtained as a result of the line search
procedure is a local minimum of the function f. [4]
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[4.29]

2. Consider the problem of minimizing the function

(a)

{(b)

(d)

f(z) = % + 222 + 4z + 4as.

Compute the stationary points of the function. 2]

Consider the minimization of the function f using the gradient algo-
rithm. Express analytically the form of the generic iteration, z.e.

Pk+1 =pk —aVf
(where p; = [z}, z8]"). [4]
Compute three steps of the gradient algorithm with exact line search

from the initial point pg = [0,0]’, using the fact that, for this pg the
exact line search parameter o is equal to 1/3 for all k. Check that

« = 1/3 for the first iteration. 8]
Exploit the results of part (¢) to show that the gradient iteration with
exact line search for pg = [0,0] gives

4odad

= —gab - 3,

and hence show that
. 1
(2 +2) = 2(af +2)
k41 Lo &
(5™ +1) = —E(CL‘Q +1).
Hence, deduce that the sequence {py} can be written as

2. 2
Pr+1 = l 35+—11c+1 } .
(-3 -1

Show that the sequence {py} converges to the stationary point deter-
mined in part (a). 6]
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4.29]

3. Consider the minimization problem

(a)

(d)

min —xi1zo
T1,T2

0<z1+22<2
—2<x —x9 £2

Sketch in the (z1, z2)-plane the level surfaces of the function to be min-
imized and the admissible set. Hence show that all points in the admis-
sible set are regular points for the constraints. [6]

Using only graphical considerations, determine the global solution of the
considered problem. [4]

State first order necessary conditions of optimality for such a constrained
optimization problem. Show that the point determined in part (b) sat-
isfies first order necessary conditions of optimality, for some selection of
the multiplier p. [4]

Show that the point determined in part (b) satisfies second order suffi-
clent conditions of optimality for such a constrained optimization prob-
lemnt. 6]
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4.29]

4. Consider the optimization problem

(a)

(b)

(d)

X1,22,23

min Tx%—FTx%—}—x%
.271+332+:U3—1:0.

Transform this minimization problem into an unconstrained minimiza-
tion problem by solving the constraint equation for z3 and substituting
the solution into the objective function. [4]

Assume T > 0. Consider the unconstrained minimization problem de-
termined in part (a). Find (the unique) candidate optimal solution and
show that this is indeed a local minimizer. 6]

Assume T > 0. Exploit the results in parts (a) and (b) to determine the
solution of the constrained optimization problem. 2]
Assume T > 0. Consider the so-called {1 penalty function

|331+332+x3——1|
€

p:T:E%+Tx§+:1:§+

with € > 0 and sufficiently small. Show that the unique stationary point
of f, coincides with the optimal solution determined in part (c).

(Hint: recall that that %ﬁ—l = sign(z) and that sign(0) € [~1, 1]. More-
over, use the fact that the stationary points of f, do not depend upon

the parameter e.) (8]
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(a)

(b)

(¢)

(d)

[4.29)

H. Consider the optimization problem

min z1x9
x1,T2

2+ z3-1<0.

State first order necessary conditions of optimality for such a con-
strained optimization problem. [4]

Using the conditions derived in part (a), compute candidate optimal
solutions. 6]

This constrained optimization problem can be transformed into an
unconstrained optimization problem by defining the so-called barrier
function

Bi(z) = 2129 + —

1 -2 —z2’
with € > 0, and considering the unconstrained minimization of B(z).
Determine the stationary points x, of Be(z).
(Hint: show that all stationary points Z = (&1, Z2) are such that #; =
—Z2, and then note that the solutions of the equation
2ex
r— ————==0
(2z% — 1)2

are r =0 and z = i—”bézﬂ_e)

Discuss the feasibility of the obtained stationary points z.. Compute

im0 z and compare this result with the results obtained in parts
(a) and (b). 6]

Discuss the advantages and disadvantages of the proposed barrier
function method in comparison with the sequential penalty functions
method presented in the lectures. [4]
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[4.29]

6. Consider the function

f:z‘ll~a:1xg+x%

aud the problem of finding a global minimum for f.

(a)

(b)

Briefly describe the Branin method for global minimization. [4]

Write the formulae for the so-called Branin system,
i =—[V*f]7'V,

for the particular function f specified above. 2]

Compute the equilibria of the Branin system determined in part (b).
Show that these equilibria coincide with the stationary points of the
function f. Show that f is radially unbounded. Hence determine the
global minimum of f. [4]

Consider the linearization of the Branin system, computed in part (b),
around its equilibrium at z = 0. Show that this linearized system has
two eigenvalues equal to —1, hence deduce that the point z = 0 is locally
attractive. [4]

Write now the formulae for the modified Branin system
&= —det(V?F)[V2f]"'V,

for the function f above. Consider the linearization of the modified
Branin system at the zero and show that this equilibrium point is un-
stable. [4]

Give reasons for the modified Branin method being preferable to the
Branin method when determining a global minimum for the function f
above. [2]
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Optimisation - Model answers 2005

(Note to external examiners: all questions involve mostly applications of standard methods
and concepts to unseen examples.)

Question 1

(a)

The stationary points of the function f are computed by solving the equation

B | 2zt + 4(1‘1 — 332)3
O—Vf— [ $1—4($1“$2)3 ’
yielding
1 3 1 3
P =(0,00) Py=( ) P=( )-

16’16 16" 16

Note that

Vi =

24 12(x —22)? 1 -12(z; — x5)?
1—12(z; —a2)2  12(z — 22)?

Thus
Vi (P) = [ - ]

which is an indefinite matrix,

VE(Py) = V2 (Py) = [ U ]

which is a positive definite matrix. As a result, P is a saddle point, and P, and P; are
local minima.

By definition, a direction d is a descent direction for f at p if there exists § > 0 such
that

flp+Ad) < f(p),
for all A € (0,6). Consider now the given direction and note that f(p) = 0 and that

flp+ Ad) = —2X2 + 2567,

Hence, f(p + Ad) < f(p) for all X > 0 and sufficiently small. (Note that V f(p)'d = 0,
hence this condition cannot be used to decide if d is a descent direction.)

) To perform an exact line search, along the direction d starting from p = (0, 0), we need

to find the minimum of the function
d(X) = f(p+ Ad) — f(p) = —2)\* + 256)*

for A > 0. Note that

dd) 3
—— = —4A 4+ 1024
dA * ’

hence the minimum is achieved for A = 1/16. The resulting point is (1/16, —3/16) and
this coincides with one of the local minima determined in part (a).



Question 2
{a) The stationary points of the function f are computed by solving the equation

21 +4
4zo + 4

= 3]

{b) The generic iteration of the gradient algorithm for the considered function f is

?

o:w:{

vielding the stationary point

P ah a2ak 1 4) B = ok - a(da + 4).

(¢) Setting (zf,29) = (0,0) one has (21,2}) = (—4a, —4a) and
f(—4a, —4a) — £(0,0) = 4802 — 32a.

Minimizing this function yields o = 1/3 (as stated). Therefore, (z},x3) = (-4/3,-4/3).
Repeating the same considerations, and setting always a = 1/3, one has

(z},23) = (—16/9,-8/9)

and

(23, 23) = (—52/27, —28/27).

{d) Setting o = 1/3 in the gradient iteration yields

1 4
k+1 k k+1
T = -7 — = T = —
! 371 3 2
and this can be also written as

' 1, 4 . 1
@ +2) =@ +2) (@ 1) = —o(@h 4+ ),

As a result

= (e ey = (<)) e,

1 k 1 k
dr=2(z) -2 a=(g) -1
k

1 — —2and x’Q‘ — —1, i.e. the sequence converges to the stationary
point determined in part (a).

or, equivalently,

Finally, as k — co z



Question 3

{a)

(h)

The admissible set is the shaded area in Figure 1. The arrows denote the gradient of
the constraints on the boundary of the admissible set. As can be seen, these vectors
are always independent, therefore all points are regular points for the constraints. The
dashed lines represent level lines of the function f.

EN

Figure 1: Admissible set and level lines of the function f.

From Figure 1 it can be seen that the minimum is achieved when the level line of the
function f is tangent to the admissible set, i.e. at the point p = (1,1).

Consider the Lagrangian
L = —xizg + pr(—x1 = 22) + pa(a1 + 22 — 2) + p3(—2 — @1 + 2) + palay) — 72 — 2).

The first order sufficient conditions of optimality are

—T2—p1tp2—p3tpg
Vel =0=
! —ZTrpr+p2tp3 - ps
—T1 — I <0 1 +122—-2<0 —I1—x9—2<0 ] —x2—2 <0,

p =0 p2 20 p3 >0 pa >0
pri—ary—x2) =0 p2(z1+22-2) =0 p3(—2—z1+z2) =0 pa(z1—z2—2) = 0.
Setting (71, 22) = (1,1) and selecting p; = 0, p3 = 0, py = O satisfies all the above

equations.  Hence, the point (z1,z3) = (1,1), together with the given multipliers,
satisfies first order necessary conditions of optimality.

To check second order sufficient conditions note that, for (z1,z2) = (1,1), the only
active constraint is z; + 22 — 2 < 0. Therefore we need to check positivity of s ngLs
for s = [s1 9]’ such that {1 1]s = 0. This means s; 4+ s, = 0, hence, solving for sq, one
has
-1
§'V2 Ls = { s1 =8 ] [ 0 } Si
—$1

~1 0

]=2s%>0

for s # 0. As a result, the point obtained from graphical considerations in part (b) is
indeed a local minimizer for the considered problem.



Question 4

(a)

(h)

(d)

Solving the constrain equation for x3 yields x3 = 1 — z; — z5. This is replaced in the
function to minimize, hence resulting in the unconstrained minimization problem

min f
T1,22

with ~
f=Ta? + T23+ (1 —z1 — x2)2

To determine candidate optimal solution consider the equations

i | 2Tz + 2z + 22 -2
0=V/= [ 9Ty + 221 + 225 — 2.
These have the unique solution
* 1 * 1
T, —= —— Ty == ———
17" T42 2T T+2

Note now that
= 2T + 2 2
27
Vif= [ 2 2T +2 ]

and this is positive definite for 7' > 0. Hence, the obtained stationary point is a local
minimizer for f.

To obtain a solution of the original problem it is enough to compute

T
T4 2

x3=1—1z] —

To compute the stationary points of f, (recall that d‘l—;l = sign(x)) consider the equations

2TLE1 + sig‘n(zl—i-zg—i-zg—-l)

0=Vf,= | 2Tz, + Sgalartoatza=))

€
i -1
23 + mgn(zﬁ—iz-}—zg )

These can be rewritten as

sign{z1 + o + 3 — 1)
€

2T;E1 = 2T:E2 = 2$3 = —
vielding
z1 =a3/T zo = 23/T.
Replacing this in the last equation yields

sign(xs/T + z3/T + 3 — 1)
2153 = — .
€

Note now that the solution of this equation may be independent of € only if z3/T +
w3/T + 23 —1 =0, implying 23 = z3. Finally, this implies that 1 = z} and z5 = z3,
i.¢. the unique stationary point of f, coincides with the optimal solution obtained in
part (c¢).



Question 5

‘a)

h

{d)

Let
L=xzp+p(a? + 22 -1).

The first order sufficient conditions of optimality are

0=V,L=

To + 2px1
1 + 2pz2

i +23—-1<0  p>0
(z3 4+ 25— 1)p=0.

From the first two equations we have that if p # 1/2 then z1 = 2o = 0. If p = 1/2 then
21+ xy = 0 and from the last equation :cf + .T% —1=0. As aresult z; = i% and

Iy = ;%. In conclusion we have three candidate solutions

1 1 1 1
E’_ﬁ) Psz(—ﬁ»ﬁ)-

To determine the stationary points of Be, consider the equation

P =(0,0) Py =(

Ty + 26—y
0=V,B, = (1=21-23)
i T *
71+ 2eqrt oy
From these we obtain )
= g
x J— -
T_é - ~2t(1—~z51—z27)2
hence z1/xy < 0 and zy/x1 = x1/z3. As a result x; = —z9. Replacing in the second
g
equation yields
T
xry = 26m

hence we obtain five candidate solutions, namely

(\/2+2\/§E Y242V
2 T 3

V2-2v3 2 avE V2 - 2/Z \J2-2v3%
Py = ( y = ) ) )-
2 2 2 2
Note that F,, Py and P, are feasible, whereas P, and P, are not feasible. Finally
]ju - Plv

:(_\/2+2\/Z V2+2v2e

P, = (0,0) P, = 5 5

) R )

P =(—

lim Pb = IlmR = PQ
e—0 e—0
and

lny P =iy . = o

The proposed method is preferable to the sequential penalty function method because
it provides feasible solutions also for € > 0. However, the function B, is not defined on
all IR?, hence it may be difficult to perform a numerical minimization.



Question 6

i)

{(b)

(From the lecture notes)
The Branin method can be described as follows. Consider the function f and assume
V f is continuous. Fix zg and consider the differential equations

CVf(a(t) = £VF(1)  2(0) = . (1)
The solutions z(t) of such differential equations are such that
Vi(z(t)) = Vf(zo)e™.
Using this fact, it is possible to describe Branin algorithm.

Step 0. Given xg.
Step 1. Compute the solution z(t) of the differential equation

d
g v ((t)) = =V f(2(t)
with z(0) = xq.

Step 2. z* = lim xz(t) is a stationary point of f, in fact tlim Vi{z(t)) = 0.

- t—00
Step 3. Consider a perturbation of the point z*, i.e. the point Z = z* + € and
compute the solution z(t) of the differential equation

d ,
EVf(z(t)) = Vf(z(t)).

Along this trajectory the gradient V f(z(t)) increases, hence the trajectory escapes
from the region of attraction of xg.

Step 4. Fix t > 0 and assume that z(?) is sufficiently away from xq. Set zo = z(f)
and go to Step 1.

Note that, if the perturbation € and the time # are properly selected, at each iteration
the algorithm generates a new stationary point of the function f.

If V2f is continuous then the differential equations (1) can be written as

#(t) =+ [V27(ae))] " Y (e(t)).

Therefore Branin method is a continuous equivalent of Newton method. Note however
that, as V2 f(x(¢)) may become singular, the above equation may be meaningless.

The Branin system is

i Ty | 1 —48x%m§ — 833% - I
T @ | 144a?2i — 1| 8a} + xp — 48ziad

The equilibria of the Branin system are P = (0,0), P, = (1/2,1/2) and P3 =
(—1/2,—1/2). Note now that these are also such that Vf(F;) = 0, for 1 = 1,2,3.
Hence, the equilibria of Branin system coincide with the stationary points of f. Note
now that limjz e f(z) = +00, hence f is radially unbounded. Moreover f(P;) = 0
and f(P2) = f(Ps) = —1/8. Hence the global minimum of f is —1/8 and there are two
global minimizers, P, and Ps.



(1} The linearization of the Branin system around the point P; is described by

(f)

. -1 0 -
T =
0 -1 ’
and this shows that the point P; is locally attractive, and that the linearized system
has two eigenvalues equal to —1.

} The modified Branin system is

i = @y | | —48z323 — 823 — 1y
Tl @2 | | 823+ zp — 48z2a3

Its linearization around P is described by

. [10
T=lo 1 |®

and this shows that the point P; is an unstable equilibrium for the modified Branin
system.

The modified Branin system has the following advantages:

- the differential equations are defined for all x;

— the point P, which is a local maximum, is unstable therefore the trajectories of
the system will not be attraced by Py.



