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4.29]

Special instructions for invigilators: None

Information for candidates:

o All functions are sufficiently smooth.

e Vf denotes the gradient of the function f. Note that V f is a column
vector.

e V2f denotes the Hessian matrix of the function f. Note that this is a
symmetric square matrix.
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1. Consider the problem of minimizing the function

(a)

(b)

fx)=x2t+2% -y

Compute the unique stationary point of the function, and show that the
function is radially unbounded. [4]

Using second order sufficient conditions show that the stationary point
determined in part (a) is a local minimum. Also show that the point is
a global minimum. 6]

Consider the minimization of the function f using the gradient algo-
rithm. Express analytically the form of the generic iteration, i.e.

Pk+1 =Pk —aVf (*)

(where p; = [z%, z5]7). 2]

Consider the initial point py = [1,1] and apply one step of the gradient
algorithm (%) with exact line search. Verify that p; coincides with the
stationary point determined in part (a). 4]

It is known that for quadratic functions, such as the function f above,
the gradient algorithm is globally convergent, however the speed of con-
vergence may be very slow. Discuss why, for the function f, the gradient
algorithm with exact line search converges in one step. [4]
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2. Consider the problem of minimizing the function

(a)
(b)

1
f(x) = 1+ 2122 + 5:10%

Compute the stationary points of the function. 4]

Using second order sufficient conditions classify the stationary points
determined in part (a), i.e. say which is a local minimum, or a local
maximum, or a saddle point. 6]

Consider the minimization of the function f using Newton’s algorithm.
Express analytically the form of the generic iteration, i.e.

Pes1 =P — [V2fITIVS (%)

(where p; = [z%, 24]7). 2]

Equation (%*) defines a nonlinear discrete time system with equilibria
coinciding with the stationary points of the function f.

Consider the linear approximation of system (xx) around the equilibrium
corresponding to the local minimum of the function f with z; > 0, and
compute the eigenvalues associated with the linear approximation.

Interpret the result obtained in terms of convergence properties of se-
quences generated by Newton’s algorithm and initialized close to a local
minimum. 4]

o[}

and, using the results in part (c), apply four steps of Newton’s algo-
rithm to generate the points p;, ps2, p3, p4. Comment on the speed of
convergence of the sequence. 4]

Consider the initial point
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3. Consider the minimization problem

(a)

(b)

minl—x%—x%
T

$120

33220
T1+x9—1<0.

Show that all points in the admissible set are regular points for the
constraints. [2]

State the first order necessary conditions of optimality for such a con-
strained optimization problem. 4]

Using the conditions derived in part (b), compute candidate optimal
solutions. 8]

Show that the admissible set is compact.

Hence deduce the existence of a global minimum for the optimization
problem.

Determine the global minimum of the problem.

Is this minimum unique? 6]
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4. Consider the optimization problem

(a)

(b)

(c)

min —x; — g
*1,22

2 +z23-1=0

Transform this minimization problem into an unconstrained minimiza-
tion problem using the method of sequential penalty functions. 4]

State the necessary conditions of optimality for the unconstrained prob-
lem of part (a). Hence compute approximate candidate optimal solutions
for the unconstrained optimization problem. Discuss the feasibility of
those candidate optimal solutions.

(Hint: you may show that optimal points of the unconstrained problem

are such that z7 = x3. Moreover, use the fact that the solutions of

1 — 222
14 dg=—22

= 0, for € positive and small, are
V2 L L V2 L1 1
2 8 4"
[10]
Consider the stationary points of the sequential penalty function of part
(b). Consider the limit for ¢ — 0 of these stationary points and thus

determine candidate optimal solutions for the original constrained opti-
mization problem. 6]
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5. Consider the discrete time system

T41 = ATk

with z € IR, and output yx = z. Consider also the auxiliary discrete time
system

fk+1 = ady

with & € IR, output nx = &, and such that { = zg # 0.

Consider now the problem of determining the constant « such that the cost

J(a)=%(e%+e%+---e?\,)

is minimized, where e; = y; —7; and N > 1. (This can be regarded as a
classical parameter identification problem.)

(a)

(b)

Pose the above problem as an unconstrained optimization problem in
the decision variable «, parameterized by a and zg. [4]

Assume N = 1. Show that J(a) =0 and J(a) > 0 for all o # a. Hence
show that the function J(«) has a unique local minimum which is also
a global minimum. 4]

Suppose N = 2. Compute the stationary points of J(a) as a function of
a. Note that the number of stationary points is a function of the value

of a. Hence, determine the local minima and the local maxima of the
function J(a). 8]

For N = 2 and a = 3/2, the function J(«) is as shown in Figure 5.1.
Let L = 12 be the Lipschitz constant of J(a) for @ € [-2,2]. Apply
four steps of the Schubert-Mladineo algorithm for the minimization of
the function J(a) assuming that a global minimum is in the set [; =
{a € R| —2 < a <2} and that the starting point of the algorithm is
selected to be o = 2. [4]
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0 ; ! ; ; ; ;
-2 -1.5 -1 ~-0.5 0 0.5 1 1.5 2

Figure 5.1: The function J(a).
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6. Consider the optimization problem

(a)

: 2 2
minr;y —x
{ z1,T2 1 2

a:l—a:%:O.

Sketch in the (z1,z2)-plane the level surfaces of the function to be mini-
mized and the admissible set. (Hint: plot the level surfaces correspond-
ing to % — 23 = 0 and 27 — 23 = +4.) 4]

Using first order necessary conditions, compute candidate optimal so-
lutions. Use second order sufficient conditions to decide which of the
candidate points is a local minimum or a local maximum. 8]

Compute an exact penalty function for the minimization problem and
verify that the candidate optimal solutions determined in part (b) are
stationary points of the exact penalty function. 8]
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Optimisation - Model answers 2004

Question 1

()

The stationary point of the function f are computed solving the equation

Ozvf:[le—l}’

21:2

yielding z* = 1/2 and % = 0. The function f is of the form z'Qz + ¢z with Q =
diag(1,1) > 0, hence it is radially unbounded.

Note that V2f = diag(2,2) > 0, hence z* is a local minimum. It is also a global mini-
mum for the following reason: the function f is C! and radially unbounded, therefore
the global minimum is a stationary point.

The generic iteration of the gradient algorithm for the considered function f is
o = b — (2% - 1) okt = 2k — a(245).
Let z9 = 29 = 1. Hence
ri=1-a ry=1-2a.

Note now that f(z1,23) = 1 — 5a + 502 and this is minimized by o* = 1/2, yielding

l=1-a"=1/2=27 2)=1-2a"=0=uz3

For the considered function the gradient algorithm with exact line search converges in
one step (from any initial point) because the function is quadratic and the minimum
and maximum eigenvalues of V2f coincide.



Question 2

(a) The stationary point of the function f are computed solving the equation

0=Vf= 1+ x2

423 + z9 }

yielding the stationary points
* O ~% __ —1/2 Ak 1/2
g _[0} g —[ 1/2 } g _{‘1/2

(b) Note that

01 3 1

vzf(p*>=l1 1}20 sz(ﬁ*)zwf(ﬁ*):{l Y

Hence, p* is a saddle point, and p* and p* are local minima.

(c) The generic iteration of Newton’s algorithm for the considered function f is

(d) The linear approximation of the above nonlinear discrete time system around the point
p* is the system

00
pk+1—Apk—[0 O}Pk-

This linear system is such that p; = 0 for any pg, and this explains the local 'fast’ speed
of convergence of Newton’s iteration.

(e) A simple computation yields the sequence

B! | o.r2r2727273 _ | 0.57552339460
Po=19 V= —0.7272727273 P2= | _0.57552339460
_ | 0.51266296461 _ | 0.5004542259
37 1 —0.51266296461 47 | —0.5004542259

and this shows the fast convergence (approximately two exact digits for each iteration)
of Newton’s algorithm.



Question 3

(a) The admissible set is the shaded area in Figure 1. The arrows denote the gradient of
the constraints on the boundary of the admissible set. As can be seen, these vectors
are always independent, therefore all points are regular points for the constraints.

X2 m

N\

Figure 1: Admissible set

(b) Define the Lagrangian
L=1-z2—22+p1(—21) + p2(—22) + p3(z1 + 2 — 1)
The first order necessary conditions of optimality are

—2z1—p1+p3=0

—2xg —p2 +p3=10

—21<0 —22<0 z1+22-1<0

p1 =20 p2>0 p3=>0

—p1zy =0 —poxz=0 p3(CE1 + xo — 1) = 0.

(¢) To compute candidate optimal solutions, note that from the last line of the necessary
conditions we have the following possibilities:

Pl p1=0,p2=0,p3=0;
P2 py =0, p2=0, p3 >0;
P3 p1=0,p2>0, p3=0;
P4 p1 =0, p2 >0, p3 > 0;
P5 p1 >0, p2=0, p3 =0;
P6 p1 >0, p2 =0, p3 > 0;
P7 p1 >0, p2 >0, p3 =0;
P8 p1 >0, p2>0,p3>0.



This yields the following candidate points

Pl 1 = 29 =0 hence f = 1;

P2 1 = x5 =1/2 hence f =1/2;
P3 impossible;

P4 zy =1, 29 = 0, hence f = 0;
P5 impossible;

P6 1 =0, 29 =1, hence f =0;
P7 impossible;

P8 impossible.

As a result, we have only four candidate points:

P =(0,00 Pp=(1/2,1/2) Py=(1,0) Ps=(0,1).

(d) The admissible set is closed (the constraints include the equality sign) and bounded
(see Figure 1), hence compact. By Weierstrass theorem the function f has a global
minimum in such a set. The function f attains its global minimum at P; and Fs, which
are therefore both global minima. (This can be also shown noting that the problem is
symmetric, i.e. changing z1 into z2 and z3 into x; yields the same problem.)



Question 4

()

A sequential penalty function for the constrained problem is

1
F.=—x1 -2+ E(w? + x% - 1)2.

(b) The necessary conditions of optimality for Fi are

1+4—ml(x1+x2—1)

0=VE = 1+4” (z? + 23— 1)
As a result,
%z%(w%-}—w%—l)
é:%(ﬁmg—n

vielding 1 = 3. Let x1 = 2 = z. From the first equation we have

4 1 —2z?
— 2o s 14+4- " =0,
T €
This equation has approximate solutions
2 1 2 1 1
£ + =¢, ——£ + =k, ——¢.
2 8 2 8 4
As a result, F, has three stationary points:
V2 1 V2 1 V2 1 V2 1 11
~(— 4+ -6, — + = ~ (—— + —€, —— + <€ Py = (——¢,—=—¢€).
Pl ( 2 + 86’ 2 + 86) P2 ( 2 + 86, 2 + 8 ) 3 ( 46) 46)
Note that none of the above points is feasible, for any € > 0.

The stationary points of F, are such that

x/_f. x/ix/ﬁ)

b= %

hrn P =(— 5 lim

lim P = (0,0).
e—0

Hence, P, and P, converge to the admissible set. P is a (local) solution of the opti-
mization problem considered.



Question 5

(a)

(d)

The problem can be formulated as

: _ ] 22 2 2y2 2 N _ _Ny2 2
Or(rg}gl{](a)—éré%Q(a a)zy+ (a® — o) x5+ -+ (0" —a)

i.e. as an unconstrained optimization problem in the decision variable o and parame-
terized by a and xg.
For N =1 one has

J(a) = %(a —a)z.

Hence, J(a) = 0 and J(a) > 0 for all @ # a. This shows (using the very definition of
global minimum) that a = a is a global minimum.

If N =2 one has
_ 1, 2 2 2)2
J(a)——ixo((a—a) + (a® — o) )
Hence,
d
foa) = —z3(a — a)(20% 4 204 + 1).

Therefore, the stationary points are

P)
a a a® —2

Pp=a Php=—=4 —- PR=—c—-—F—.

! 2="5 3 2T 2

We conclude that, if |a| < /2 there is only one stationary point, whereas if |a] > V2
there are three stationary points. Computing second derivatives we have that P is
always a local minimum, and, for |a| > v/2, P, is a local maximum and P is a local
minimum.

A sketch of the application of the Schubert-Mladineo algorithm is shown in Figure 2.



Application of the Schubert-Mladineo algorithm

Figure 2



Question 6

(a)
(b)

The level sets and the admissible set are depicted in Figure 3.

Let
L(z,\) = 2?2 — 2% + Xz — 23).

The first order necessary conditions are

2¢1+A=0
—2562—2)\1}220
r1—23=0

and these yield the candidate optimal points
P =(0,00 P=(1/2,v2/2) Py=(1/2,-V2/2),
with corresponding multipliers
A1 =0 A2 =—1 Az =—1.
The second order sufficient conditions are
§'VZ, L(z*, X*)s > 0

for s 3 0 such that
1, -2z5]s = 0.

For P one has s = [0,1]) and s'(V2,L)s < 0, hence P is a local maximum. For P, one
has s = [v/2,1]" and s'(V2,L)s = 4, and for P3 one has s = [v/2, —1) and s'(V2,)Ls = 4.
Hence, P, and P; are local minima.

An exact penalty function for the considered problem is

(2z) + 4x2)(x1 —-z2) (21— x2)2
Loy o) = o =3 = ==+ =

with € > 0. Its stationary points are the solutions of

g TT1€+ driexl — exl + 11 + 4T 7% — 23 — 42}
(1 + 4x3)e
—e + 8ex? — 2x1€ — 221 — 162122 — 322125 + 22 + 1625 + 3228
(1 + 473)2%€

0= VLa(Z'1,:L‘2) =

21‘2

By direct substitution we verify that, for any € > 0, the points Py, P, and P3 are
stationary points of L,.
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Figure 3: Level sets and constraint for Question 6.






