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Special instructions for invigilators: None

Information for candidates:

e All functions are sufficiently smooth.

e Vf denotes the gradient of the function f. Note that Vf is a column
vector.

e V2f denotes the Hessian matrix of the function f. Note that V2
is a square matrix and that, under suitable regularity conditions, the
Hessian matrix is symmetric.

o Let f: IR — IR. A level set of f is any non-empty set described by
L) ={ze R : f(x)<a},

with o € R.
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1. Consider the problem of minimizing a function f : IR" — IR with the gra-
dient method applied using at each step an exact line search. Let py be the
starting point of the algorithm and {p;} the sequence generated by the algorithm.

(a)

Show that, for each k > 0, the search direction dy,; is orthogonal to the
search direction d. [4]

Counsider the function
Fx) = 1022 4+ %
Show that the sequence {py} = {zk,yx} (resulting from the application of

the gradient method with exact line search) is such that

2
TrYp

2
YTy
L /- = 900
100022 +y2 ¥V 100

Thtl = 100022 + 42

8]

Assume that the sequence {py} converges to a minimum p* of the function
f. Using the result in part (b) compute such a minimum. [4]

Compute the first element (i.e. p1) of the sequence {px} obtained from the
starting point po = (1/10,1). Let

ok
o
llpo — p*||
and show that Cj is equal to the theoretical worst case value

AM — Am
AM'*')\m,

where )\ is the largest eigenvalue of V2 f and )\, is the smallest eigenvalue
of V2f. (Note that V2f is a constant matrix.) [4]
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2.

(a)

(d)

Give necessary and sufficient second order conditions for a point z* € R"
to be a strict local minimum for a C? function f : IR" — IR. [4]

Consider the function

¢($1’$2) — ex%—i—zlxz—i—z%fl

and sketch its level sets. Hence perform two steps of the Newton algorithm
for the local minimization of ¢ starting from the point (z1,z2) = (1,0).
Let (Z1,Z2) denote the point obtained by the application of the Newton
algorithm. 18]

Show that if z* is a strict local minimum of the function
v(z) = @),

then z* is also a strict local minimum of the function f. [4]

Use the result in part (c) to compute a strict local minimum for the function
¢ in part (b). Compare the value of the exact local minimum with the value
(Z1,Z2) obtained in part (b). [4]
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3. Consider the system of equations

r(z) =23 -1 —-1=0 rz) =21 —22=0.

The solutions (z%, %) of such a system can be obtained minimizing the function
f: IR?> - IR defined as

(a)

(b)

f(z) = ri(z) +r3(2).

Compute the stationary points of the function f. Show that two of these
points are global minima, i.e. f is equal to zero at these points, and one is
a saddle point. 18]

Describe the method of coordinate directions for unconstrained minimiza-
tion and discuss when it is convenient to use this method. [4]

Starting from the point 2% = (1, —1) apply four iterations of the coordinate
direction method with initial direction d = [1, 0]’ and selecting, at each step,
the parameter « by inspection. Let z1, 22, 2% and z* be the points obtained
by the algorithm. Sketch on the (z1,z2) plane the position of such points
and discuss if the sequence thus obtained approaches the global minimum

of f. (8]
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4. Consider an optimization problem of the form

(a)

(b)

{ min f(z)
g(z) =0

State first order necessary conditions and second order sufficient conditions
of optimality for such a problem. [4]

Let
fla) = (o1 ~ 1 +33)
and
g(x) =—z + 6x%a

with B constant. Examine for what values of 8 it is possible to conclude
that z* = (0,0) is a local minimum. (8]

Solve the equation associated with the constraint and substitute the solution
into the function f. Show that for 8 < 1/2 the point z* = (0,0) is a local
minimum and for 8 > 1/2 it is a local maximum. (8]
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5. Consider an optimization problem of the form

(a)

{ min f ()
g(z) =0

Discuss the exact penalty function method for such an optimization
problem. [4]

Let
flz) = x% + x% + 3z179

and
g(x) =1 + 3.’B2 — 5.

Compute an exact penalty function for the minimization problem. [6]

Compute the stationary points and the minima of the exact penalty
function constructed in part (b). Hence construct a solution of the
considered constrained optimization problem. [6]

Let z* be the constrained minimum computed in part (c). Using the
first order necessary conditions of optimality construct the corresponding
optimal multiplier A*. [4]
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6. Consider the function
f(z)=10(1 — ze %3 sin(x/2))

depicted in Figure 1 for z € [0,20], and the problem of finding the global
minimum of f for z € [0, 20].

(a) Show that the function is Lipshitz in the interval [0,20]. (Hint: The
Lipshitz constant is upper bounded by the maximum modulus of the
derivative of f). ' [4]

(b) Assume that an estimate of the Lipshitz constant for the function f is
I, = 5. Starting from the point z = 20 apply (graphically) the algo-
rithm for global minimization of Lipschitz functions and show that the
algorithm converges to the global minimum. [16]
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Figure 1: The function f(r).
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Question 2, Part (a)

Second order necessary condition

. 9 . . . . .
Let f: IR® — IR and assume V?[ exists and is continuous. The point x* is
a local minimum of f only if

and

for all x € IR™.

Second order sufficient condition

Let f: IR™ — IR and assume VZf exists and is continuous. The point z* is
a strict local minimum of f if

and

for all non-zero x € IR".
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Question 3, Part (b)

The coordinate directions method can be described as follows.
Step 0. Given zy € IR™.
Step 1. Set k = 0.
Step 2. Set 7 =0.
Step 3. Set dy = ¢, where ¢; is the j-th coordinate direction.

Step 4. Compute ¢y, performing a line search without derivatives
along dy. *

Step 5. Set wpyy = ap + oydy, E =k + L.

Step 6. If j < n set j = j+ 1 and go to Step 3. If j = n go to Step
2.

It is casy to verify that the matrix
P, = [ dy. dk+1 dk;+n~1 ]

is such that
|deth| =1,

hence, if the line scarch is such that

. Vf(zp)d,
liln 0
koo ||dgll
and
lim |jzpe1 — 2]l =0,
k—oc

convergence to stationary points is ensured.
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Question 4, Part (a)

First order necessary condition

Consider the problem

1 { mz}nf(a:) 0

g(z) =0,

Suppose z* is a local solution of the problem Pj, and 2* is a regular point
for the constraints. Then there exist a (unique) multiplier A* such that

VoL{z*, \) =0

g(z*) =0 2)

with L(z, A, p) = f(z) + MNg(x).

Seccond order sufficient condition

Consider the problem P;. Assume that there exist 2* and A\* satisfying
conditions (2). Suppose that

:zrlvlsz(:E*, A e >0 (3)

for all « # 0 such that

Then z* is a strict constrained local minimum of problem Pp.
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Question 5, Part (a)

Cousider problem P, let z* be a local solution and let A* be the corre-
sponding multiplier. The basic idea of exact penalty functions methods is
to determine the multiplier A appearing in the augmented Lagrangian func-
tion as a function of z, i.e. A = A(x), with A(z*) = A*. For, consider the
augmented Lagrangian

L, M) = £(@) + Ma)'g(e) + - o)

The function A(z) is obtained considering the necessary condition of opti-
mality

VoLo(*, X)) = Vf(z*) + ag;:*) M =0 (4)

and noting that, if 2* is a regular point for the constraints then equation
(4) can be solved for A* yielding

* dg(z*) 89(1*), - Og(z*) "
A —_< o dr > B V(")

This equality suggests to define the function A(z) as

. A )
oy = (P2 0

Vi),

and this is defined at all # where the indicated inverse exists, in particular at
x*. It is possible to show that this selection of A(z) yields and exact penalty
function for problem Py. For, consider the function

Dg(x) Og(z)\ " dg(a :
G(x) = f(x) —g(z) (d%(:) ()J(?(:L') ) d%i’_)Vf(:z:) + %H!l(:z:)“‘z-,

which is defined and differentiable in the set

dg(x)
o

For such a function the following fact holds.

X = {x € R" | rank =1n}. (5)

Let X be a compact subset of X. Assume that 2* is the only global minimum
of fin XN A and that 2* is in the interior of X. Then there exists;? > ()
such that, for any € € (0,&). z* is the only global minimum of G in &’
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! Figure 1: The function f(z).



