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Special instructions for invigilators: None

Information for candidates:

||| denotes the Euclidean norm, /(x"x) , of the vector x.
Vv denotes the gradient of v ; that is the (column) vector of first-order partial

derivatives of a function v on RN";

V?v denotes the Hessian matrix of second-order partial derivatives of v .
O(t) and o(f) denote the Landau order symbols:

F(O=0@) if | f(1)|/1 is bounded for all ¢ sufficiently small ;
f)=o0() if llinoll f@))/t=0.

(A vector function is also denoted by O(f) or o(r) if its
components have the corresponding property).

A corollary of Taylor’s theorem is that twice continuously differentiable functions v on
R" can be expanded as follows: for x,z € R"

v(x+z) = v(x) + V() z+ 12"z + offe).

A “smooth function” is to be taken to mean a “function that possesses continuous
p
derivatives of all relevant orders”.

 OptionButton]
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(a) Suppose v(x) is a smooth convex function on the plane. Prove that the point
¥ =(l,%,), where | X, |< 1, is a minimizer of v, restricted to the square domain
F:{(xlaxz): lxl ‘Sla lxz |S1 }alf

v .
—(1,%,) <0,
PRRLCEEY

X1

ov n
,x,) =0 .
- (L4,)

2

(Hint: use the convexity of v and the fact that the directional derivative Vv(x)’ (y — %) is
the limit, for & decreasing to zero, of (v(%)+ e(v(y) —v(x)))/ & to prove that, for any

yeF, v(»)-v(#)z V@ (y-%).

(b)  Consider an application of two-stage receding-horizon control design to the
problem of regulating the constrained first-order system

Yia =V — Uy, |u, | <1.

The function f(y)in the feedback law u, = f(y,) istaken to be the ﬁrst component

u, () of the pair (#1,(y), (#,(y)) that minimizes, for each y, the cost function
V(s ugsty) = (v —uy) +3 (v —u, —u,)?
over the square {(u,,u,): |u, |<1, |u, |<1}.

It turns out that the saturated “dead-beat” law

S Lif y=1,
= y if |y|<],

= —1if y<-1

fulfils the design requirements. Establish that it does so for the range of values of
y:0< y<2, using where necessary the assertion in (a). Illustrate your answer with a
sketch of the range of minimizing points (i,(y), #,(¥)) inthe (u,, u,) plane.
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(a) Give necessary and sufficient “second-order” conditions for a point x € R"” to be

an isolated local minimizer of a smooth function v on R". (Here, an isolated local
minimizer refers to a point X that is a unique minimizer of v over a sufficiently small
neighbourhood of itself; that is, there is a positive distance between x and any other
local minimizer).

Determine the isolated local minimizers, if any, of the following functions
(7) v (X, x,) =x, xz""')((xf"'x;):
(ii) v, (%, %) =1+x7 +2x, x, + x5

and justify your choices.

(b) Suppose v:R" — R is a non-negative smooth objective function with only

isolated stationary points and with bounded level sets {x v(x) < c}. A steepest-descent
method with Armijo line search is used to approximate a local minimizer. Describe this
algorithm. Would you expect the algorithm always to converge to a local minimizer? If

so, at what rate?
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The Newton algorithm for minimizing a smooth function v : R" — R generates
approximations x, to a local minimizer % according to the recursion

x,,, =x,— (V%) V(x,).
(a) Let
V(E;x) = v(E) + V(X)) (x = %)+ L (x - %) Vu(X)(x — %)

be the second-order expansion of v(x)about x . Show that, as long as the Hessian matrix

V*v(x,) is positive definite and x, is not a stationary point of v,
‘N;(xn 5 xu+]) < V(xn) .
(b) Establish that the stationary point of
v(x)=x =3x+1 xeR

at x =1 is a local minimizer. Determine the Newton algorithm in this case and calculate
the first two approximations to the minimizer with x, =1.1 taken as the initial

approximation.
(c) For smooth functions v of a real variable, the sequence of steps
s, =X X

n nel — m
generated by the Newton algorithm possesses the property (if the s, converge to zero)
Sn+1

2

previous calculations to obtain an estimate of the third approximation x, given by the
algorithm described in (b).

that for increasing » the ratio converges to a constant. Use this property and your

. N $
(Hint: ~- and —— converge to the same constant).
§2 I
n

n=1

How would you describe the rate of convergence of the algorithm in this case?
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4. Let Lbe a vector subspace of R" that is spanned by a collection of
vectors {z,,--, z, }; that is,

L=1[z,,z,]={xeR": x=a,2 ++a,z, forsomeq,a,, .a,cR}.
For any x, € R", the linear variety x, + L is defined to be
xO+L={xeiR”: x=x,+z  forsome zeL}.

Note that x, + L coincideswith x, +L ifx, —x, e L.

(a) Prove that x € x, + L is the global minimizer of a smooth convex function

v constrained to the variety x, + L if
Vv()'z, =0 fori=1,m

You may use the characterization of a minimizer of v on x, + L asapoint X € x, + L
for which

Vv (x~%)>0 forall xex,+L.
(b) The response of a linear system is expressed in terms of the inputs by

Vsl =3U, 22U, + Uy, .
(1) Determine (column) vectors z,, z, € R’ that form a basis for the two-dimensional

vector subspace L of control triples (u,,u,,u,)" that force y, to take the value zero.
(i1) Consider the problem of minimizing a cost

2 2 2
(U, Uy, U ) = U Uy U

subject to the terminal constraint that y, =1. Show that the constrained set of control
triples (u,,u,,u;)" takes the form of a linear variety (1,0,0)" + L, where L is the

subspace described in (i). Determine the optimal control triple (i, 7,,7,)" .
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Consider a non-linear least squares problem, in which the objective function is a sum of
. [T 3 . .
squares of “residuals” 7, (x):

m

v(x)=%k§rk(x)2, xeR".

(a) In the Gauss-Newton method the basic iteration that is used to generate
approximations to the minimizer x of v(x) depends only on evaluation of the residuals
and their gradients:

¥  =x—HE) Sr )V (), xeR?,
k=1

where, here, x is the current iterate, x* the next iterate and

m

H(x)= kZ_:] Vr (x) Vr, (x)" .

Show that x™ coincides with the minimizer with respect to z of the squared norm of the
vector of residuals linearized about x:

F(x; z) =(R(x; 2),.., 7, (x5 2))",
where
r.(x; z) = rk(x)+Vrk(x)T(z~x) for k=1,2,---,m.

(b) The output of a discrete-time linear system is modelled by the equation
vy, =a+bp*+cq'+d, k=12,

The unknown parameters a,b,c, p and g are to be estimated; the d, are unknown
disturbances that are believed to be very small or zero. A sequence y, of outputs is

measured for £k =1,---,100. Formulate a non-linear least squares problem the solution
of which provides estimates for the unknown parameters, and obtain an expression for the
gradient Vy(x) of the objective function.

(c) Why is it appropriate to use the Gauss-Newton method rather than the full

Newton method for the problem in part (b)? Comment on the likely rate of convergence
of the Gauss-Newton method.
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In a particular restricted step method that is used for the minimization over the plane of
smooth functions v with indefinite Hessian, the iterates approximating the minimizer are
generated as follows.

If x¢ is the current iterate, the next iterate x* is taken to be x“ +s7, where s*
minimises the second-order approximation to v(x)-v(x“):

v(x 8) =1s'Cs+b's

over the disc {s:s7 +s; <h’} of radius #. Here C is the Hessian matrix V*v(x*) and

b the gradient Vv(x).

(a) Suppose that C has a negative eigenvalue. Then it can be shown that s7 lies

on the edge of the disc; thatis, s*'s* = k>,

i Cn b, . 5
Let C :{ } , b={ } , s ={ } .
Cn Cnm b, 5,

Using the method of Lagrange multipliers show that s* satisfies the equations

2 2 2
s, +5, =h",

$5(C 8 + €38, +Dy) = 5,(Cy 8y +Cp8; +by).

(Hint: eliminate the multiplier 4 from the necessary conditions associated with the
Lagrangian.)

(b) The quadratic equations in (a) in general have four possible solutions.
Determine these solutions in an application of the restricted step method to the function

3 3 4 4
v(x,xy) =xx, +3(0 —xy) +500 + x;)
where the current iterate x° is taken to be (0, 0)" .

(c) Devise a sensible strategy for selecting from these solutions a suitable next step
x" —x° and so determine x* .
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