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1. Consider the feedback system shown in the figure below, where a continuous-
time plant with transfer function P is controlled by a discrete-time controller
with known clock period h > 0 and transfer function C. Here, r is a variable
reference signal and d is a constant disturbance signal. The signals 7, p and
y are discrete-time, while d, 4 and w are continuous-time. As usual, the
D/A converter is a zero order hold of period h, while the A/D converter is a
sampler of period h. We have

c
1+Ts’

The coefficients of C are known, while ¢, T and d are unknown and should be

estimated. The true transfer function of the plant may be more complicated,

but we would like to model it by the simple function given above. The whole

feedback system is stable. d

P(s) = Clz) =g +c1z Y +eaz™2... +cz72.
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(a) Assuming that P is given by the simple formula above, compute
(exactly) the tranfer function P% of the discretized plant from p to y.
For which values of ¢ and T is P? stable? [4]

(b) Suppose that the values rg, yi are available for 1 < k < 2000. By
defining new variables if necessary, find a model of the system of form
Yr = @i +eg, where y; and ¢y are known, 8 is the vector of unknown
parameters and ey are the equation errors. [4]

(¢) Describe a least squares based method for estimating ¢, T' and d
from the measurements of 75 and y;, 1 < k < 2000, using the model
derived in part (b). [4]

(d) We denote by 6 the least squares estimate of 8 for the model derived
in part (b). Which of the three reference signals listed below will
lead to the smallest covariance matrix Cov § (as measured by its
norm)? Which will lead to the smallest value for Var e, the estimated
variance of e;? Give a brief reasoning.

(1) r =1, (i) 7 = cos0.2k,
(iii) rx = white noise with E(rg) = 0, Varrp = 1. [4]

(¢) If ¢ and T have been found, how can we approximate the transfer
function from p to y by a FIR transfer function of order 10?7 [4]
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2. Two balls are floating in a pool of still water, in fixed horizontal positions,
at a distance of 6 m from each other. When a small vertical force acts on
the first ball, it creates waves. After about 4 sec, the waves reach the second
ball, causing it to oscillate vertically. If the first ball stops moving, then
the oscillations die down quickly (in particular, there are no waves being
reflected from the sides of the pool). We make measurements of the verti-
cal displacement y of the second ball using a digital circuit, obtaining the
measurements yr = y(kh), k = 1,2,3,..., where h = 40 msec is the sam-
pling period. The force acting on the first ball is constant on each sampling
interval (i.e., between two multiples of h). We would like to estimate the
discrete-time transfer function from the sampled force acting on the first ball
to the sampled vertical displacement of the second ball. We would like to
model this transfer function as follows:

bo + b12~1 + byz2
1+a1z271 +a92=2"

Glz) = 2 ™.

where the positive integer m and the real numbers by, by, bg, a1, ag should
be determined. The true transfer function is much more complicated.

To find the impulse response, we start from rest at ¢ = 0 and push the first
ball down with a known force F' > 0 for ¢ € [0,h]. For ¢ > h the force be-
comes zero. We have 300 relevant measurements of the vertical displacement,
Y1,¥Y2,-.-Y300- For k > 300 we have y; = 0.

(a) Suggest a way for estimating a narrow range of suitable m. [4]

(b) Assuming that an m has been chosen, describe a least squares based

method for estimating the remaining unknown parameters. [5]

(c) If the estimation procedure you described in your answer to part (b)
is repeated (using the same data yg) for all m in the narrow range
determined as in part (a), how can we decide which value m is the
best? [3]

(d) Suppose that good estimates for m, bg, b1, b2, a1, az have been
found. How can we estimate the continuous-time transfer function
from F' to y, in the form

G(s) = e " Go(s),

where Gy is a proper rational transfer function of low order? [4]

() Suppose that a second similar experiment is made to measure the
impulse response of the system. The new results are 41, ¥2, - - - 300,
which are close (but not equal) to y3,y2, - - . y300- How can we use the
new data to improve our model G%? [4]
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3. For an unstable linear SISO plant with an unknown transfer function P, we
want to design a stabilizing controller such that the output signal y should
track any reference signal » which is sinusoidal with a frequency of 50 Hz. A
random disturbance d also acts on the system. At frequencies higher than
2000 Hz the gain of the plant is practically zero. The feedback system is
shown in the diagram below. We would like to make the influence of d on
the tracking error z as small as possible.

a "c_ifu-]: -

+ +

To achieve tracking, we use a controller with the transfer function

kQS
Cs) = kg + 20
(8) =k + T oomye

where k1, kg are parameters to be tuned. It is known from experiments that
for k3 = 1 and —50 < k9 < 200, this feedback system is stable.

(a)

Compute S, the transfer function from r to z, in terms of k1, k2 and
P. If k1 and kg are such that the system is stable, d = 0 and r(¢) =
R cos(wt), describe the behaviour of z(t) for large ¢ > 0. Comment in
particular about the case when the frequency of r is 50 Hz. [5]

In order to choose good values for k; and k9, we would need an ap-
proximate Bode plot of P. Describe identification experiments which
can provide us with the necessary data for the Bode plot. For these
experiments, we are allowed to use the controller (if needed) and we
can generate any bounded signal r. We cannot generate d, but we can
set up the experiments in such a way that d = 0. Describe briefly the
computations necessary to process the data from the identification
experiments. [6]

Assume that the feedback system is stable, r and d are independent
stationary random signals with expectations E(r) = E(d) = 0 and
known power spectral densities Sy and Sg4. Is z a stationary random
signal? Compute E(z) and write the formulas needed for computing
Var (z) (the power of z), in terms of P, C, S, and Szg (do not do
any computation). [6]

If k& = 1, k2 = 100, r(t) = Rcos(1007t) for all ¢ € R and d is as
in part (c), compute E(y(t)). Give a very brief reasoning. Hint: use
your answer to part (a). [3]
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4. In the model circuit shown below, R = 1kQ while C;, Cy and the gain k
of the differential amplifier are unknown positive quantities. No current is .
flowing to the inputs of the amplifier. We can choose the waveform of u and
we can measure the output voltage y. The true circuit is more complicated
than the model circuit shown, and hence we cannot expect a perfect match
between its response and the response of the model, but we would like to get
a close match in a certain frequency range.

u

R C +
v }—i-g C, _k y
R

(a)  Choose state variables and construct a state space representation of
the model circuit, of the form & = Az + Bu, y = Cz + Du, where z
is the state and A, B, C and D are matrices. Is this (model) system
stable? [6]

(b)  Compute the transfer function G of the model circuit (from u to y),
in terms of R, C; and Cy. Evaluate the gain of G for very low and
for very high frequencies (i.e., for w — 0 and for w — 00). [6]

(c) Suppose that by measurements that use sinusoidal u, we have ob-
tained estimates for G at 50 angular frequencies wy, ...wsq, in the
frequency range of interest. Using these data, how could we estimate
C1, C2 and k using a least squares based algorithm? Write down the
formulas which give the estimated C1, Cy and k, taking care to de-
fine all the symbols that you use. Take care to make sure that the
estimates for C1, Cy and k are real. [8]



5.

A feedback system is obtained by interconnecting a discrete-time plant P
with input v and output y described by

Y — O'ka—l = U — 0.8uk_1

with a “differential” controller C' with input y and output p described by

Pr = 0(Uk — Yk—1)»

where ¢ is an adjustable gain. The interconnection is such that v = v — p,
where v is an external input signal.

(a)

(b)
()

(d)

Draw a block diagram of the feedback system and compute the closed-
loop transfer function G from v to y. [3]

Check the stability of G for § = —1,0,1. [3]

If 6 is such that G is stable, compute the DC-gain of G. Give a
simple explanation why the DC-gain is independent of 4. [2]
Assume ¢ = 1. Explain why the step response of G is of the form

yp = 2+ cl(/\l)k + c2()\2)k forall k>0,

where |A1] < 1, [A2| < 1. Explain briefly how the constants

1, A1, ¢2, Ao can be computed, but do not compute them. [5]
Assume that the plant P has been obtained by a discrete-time identi-
fication procedure applied to a continuous-time LTI system, via sam-
ple and hold blocks (i.e., D/A and A/D converters) with a sampling
frequency of 2 kHz. Make an estimate of the transfer function P°
of the continuous-time system, which should be valid for frequencies
that are significantly lower than the sampling frequency. [2]

Suppose that the feedback system is stable and the output mea-
surements gy of the system P are subject to measurement errors ey,
so that the controller C receives the corrupted measurement signal
Yk = Yk + e, where e, is normalized white noise (in particular,
E(ex) =0 and E(ez) =1). Thus, the equation of C is now

pr = 0(Uk — Uk—1)-

Given the corrupted measurements g, 91, - - - 100 (the input signal v
is also known), how can we compute an unbiased prediction of 3017
How large is the variance of the prediction error? [5]



6. We know from physical considerations that a nonlinear discrete-time system
Y is formed by the cascade connection of two stable LTI subsystems, and
the input to the first linear subsystem is u2, where u is the input signal
of . In the block diagram of ¥, shown below, the block marked X2 is
a static squaring block. The transfer functions of the LTI subsystems are
denoted by G and H. The output y of ¥ is obtained from the output of the
second subsystem, but it is corrupted by the measurement noise e, which is
(discrete-time) white noise.

P e

w w? +

—! X* -1 G H y

+

Suppose that u is (discrete-time) white noise independent of e. The values
ug, pr and yi have been observed for k = 0,1,...10,000. Based on these
data, we would like to estimate the transfer functions G and H.

(a) Is u? stationary? Describe a method for estimating E (u,“:) and C},‘z"z

(the autocorrelation function of u2) for 7 = 0,1,...100. [3]

(b) Describe a method for estimating the auto-correlation function CF?
and the cross-correlation functions C’;‘zp and C® for 7 = 0,1,...100.
Explain very briefly how this problem is related to the concept of
ergodicity. Is y ergodic? [3]

(c) Describe a method for estimating the terms go, g1,..-g100 in the
impulse response of G from the results of parts (a) and (b). [3]

(d) Describe a method for estimating the terms hg, hy...h1go in the
impulse response of H from the results of part (b), and explain briefly
how this method is derived from the properties of C¥P and CFY. [5]

(e) Having estimated go, 91,...9100 from part (c), how can we build
a FIR filter whose transfer function is a good approximation to G?
Write the corresponding difference equation. [2]

(f) Express SYY, the power spectral density of y, in terms of E (u%),
E(u}), E(et), E(e2), G and H. [4]
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