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1. A random signal (ug) has the structure

up, = Asin(0.01k + ) + wy, keZ,

where A > 0 and ¢ € (—m,n| are unknown and (wg) is a stationary
ergodic Gaussian random signal. The measurements uj are known for
k = 1,2,3,...10°. Our aim is to estimate A, ¢, E(wg) and Var(wg). In
the first five parts below you are asked to prove certain statements. If you do
not succeed to prove one of these statements, you can still use this statement
to answer the other parts.

(a)

Assume that (ax) and (b;) are independent normalized Gaussian
white noise signals. Define the complex random sequence cj by
cp = % (aj, + iby). Show that ¢y is normalized Gaussian (we regard

the complex plane as being equivalent to R2). 2]
Let (1) be an arbitrary sequence of real numbers (k € Z) and let
¢i, be the random sequence from part (a). Show that the sequence
(e®¥kcy,) is a normalized Gaussian white noise signal. 2]
Show that for every v € R we have

1 N

. vk —

ym 2 e =0,
k=1

with probability 1. Here, (cx) is the sequence from part (a). 3]

Let (ay) be the sequence introduced in part (a). Show that we have

N N
]\}Enoo —]lv Z cos(vk)ag = 0, ]\;Enw % z sin(vk)ar = 0,
k=1 k=1

with probability 1. Hint: justify and then use the fact that the result
from part (c) is true also for the complex conjugate sequence (). [2]
Let (ay) be the sequence introduced in part (a). Assume for simplicity
that (wy) can be obtained from (ag) by filtering it through a FIR filter
with impulse response (gi). Show that the two formulas from part (d)
remain valid with wy, in place of a. (3]
The statement from part (e) is true for » = 0.01 even without assum-
ing that (gi) is FIR. Using this fact, propose a method to estimate A4
and ¢. Hint: think of the identification method that uses sinusoidal
inputs to estimate the values of the frequency response function. [4]
Propose a method to estimate F(wy) and Var(wg). Hint: use the
estimates for A and ¢. [4]



E4.27, C2.3

The proposed mathematical model of a static system with two inputs, u and
v, and with one output w is

w=ln [A+ (3)2 + <%)2] . (1)

The variables u, v and w can be measured and o, (3, A are unknown pos-
itive parameters. We have 100 measurements available from experiments,
u1,ug, . ..uipo and similarly for v and w. Because of measurement and mod-
eling errors, the measurements do not fit any model of the form (1) exactly.
(a) By defining new variables if necessary, rewrite the model of the system
in the form yx = @@+ ex, where yi and ¢y, are known, 6 is the vector

of unknown parameters and e, are the equation errors. [3]

(b)  State the condition under which a unique minimizing § exists for
the cost J(6) = e1 + 62 .+ 6100 Assuming that this condition is
satisfied, write the formula for the vector of estimated parameters 6

that minimizes J(6). [3]

(c) Suppose our data are such that u% + v,% =13 for all kK € IN. Explain
why in this case we cannot estimate a and (3, but we can still estimate

- Elg Explain how to estimate alg - -ﬂ—lg [4]

In the sequel, we assume that there is a unique minimizing 6 for the cost
function J(8) from part (b).

(d)  Assume that ey are independent and identically distributed random
variables with E(e;) = 0. Give a formula for an unbiased estimate of
Var(ex) in terms of the values of ¢y and yi from part (a (a). [3]

(¢)  Still assuming independent and identically distributed equation er-
rors, give a formula for an unbiased estimate of Cov (9), where 6 is the
estimate from part (b). Note that Var(eg) is not known, but it can
be estimated, as was required in part (d). 3]

(f)  Suppose that each of the sequences ug, vg and ey consists of inde-
pendent and identically distributed random varlables, and the three
sequences are also independent of each other. Let 6 be the estimate
from part (b). If, instead of 100 measurements, we have 500 mea-
surements, approximately how many times do you expect Cov(@) to
decrease? Give, briefly, a reason for your answer. [4]
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3. In this question, ¥ is an unknown stable discrete-time LTI system with input
signal u and output signal p. The measured output y is corrupted by the
noise signal w, so that yx = px + wg. It is known that w is a stationary
ergodic Gaussian signal with E(wy) = 0 and the power spectral density of w,
denoted by S¥¥, satisfies S¥¥(e*) > 0.1 for all v € (—m, 7] (but otherwise
SYY ig not known).

We have to identify ¥, based on the measurements of uy and y;. We would
like to model X by a discrete-time transfer function of order 4:

Dk + a1Dg_1 -- -+ aabp_g = boug + brug_1... +bgug_g +vg, (1)

where v}, is the equation error due to model mismatch. We assume that v
is a stationary ergodic Gaussian random signal with E(vg) = 0, and v is
independent of w (i.e., v and w; are independent for all integers k, j )-
(a) Let o and 8 be two independent stationary random signals and -y =
oy + Br. How are the power spectral densities of @, 3,7 related to
each other? Give a short proof of your formula. 3]
(b)  Consider the system with input u and output y. Describe this system
by an ARMAX model with a white noise input denoted e. For this,
introduce a new signal é that accounts for the combined effect of w
and v. Then represent § as filtered white noise, where both the filter
and its inverse are stable. Finally, approximate the filter by a FIR
filter. Briefly, why is it possible to represent ¢ as described above, and
why is it possible to approximate the filter by a FIR filter?

Hint: use the result from part (a). 5]

(¢c) Why is the ARMAX model of part (b) equivalent to an ARX model
of very high order? Why do we need here that the inverse of the filter
from (b) is stable? 4]

(d) Assuming that the measurements uy and yi are available for k =
1,2,...20,000, describe a least squares based method for estimating

the unknown coefficients in the ARX model from part (c). 4]

(e) Use pseudolinear regression to explain how the unknown coefficients
of the ARMAX model of part (b) can be estimated using the estimated
coefficients of the ARX model of part (d). [4]
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We want to model the output circuit of an inverter by the simplified circuit
shown below, where the filter inductor Ly > 0 and the filter capacitor Cy > 0
are known, while the load resistor R > 0 and the load inductance L > 0 are
unknown and should be estimated. We can choose the waveform of u, the
output voltage of the inverter, and we can measure the load voltage y. We
cannot expect a perfect match between the true circuit and this simplified
circuit, but we would like to get a close match in a certain frequency range.

T i
of & L
Ly

Compute the transfer function G of the simplified circuit (from u to
y), in terms of L¢,Cy, R and L. Is G stable? [4]
Evaluate the order of a state space model for the simplified circuit.
Briefly state your reasoning, but there is no need to actually construct
such a state space model. What is the order of the transfer function
G of part (a)? If there is a discrepancy between these orders, explain
why. Hint: find an unobservable equilibrium state. [3]
Suppose that by measurements using sinusoidal u, we have obtained
estimates for G at 25 angular frequencies wq, . ..wss, in the frequency
range of interest. By defining new variables, rewrite the model of
the system in the form y; = k8 + ex, where y; and @y are known
(possibly complex), 6 is the vector of unknown parameters and ey, are
the equation errors (possibly complex). Hint: think carefully about
what is known and what has to be estimated. (3]
For thff model constructed in part (cg, explain how to find the real
vector ¢ which minimizes J (6) = Zi=1 lex|?. Explain how we can
estimate R and L using 6. [4]
Construct a minimal realization of G (from part (a)), of the form
i = Az + Bu, y = Cz + Du, where A, B, C and D are matrices. [3]
We connect a hold device (D/A converter) at the input of our sys-
tem and we connect a sampler (A/D converter) at its output, both
converters working with the sampling period T. How can we compute
the transfer function of the resulting discrete-time LTI system? Will
this discrete-time system be stable? There is no need to perform any
computations to answer this part. [3]

-5 -
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We want to estimate the impulse response g of a stable discrete-time LTI
plant but we do not have the possibility to apply input signals of our choice,
we can only observe the existing signals. The input signal is denoted by
u = (ug) and it can be measured. The output signal v is corrupted by a noise
signal w, such that the measured output signal is given by yr = vg + wg.
Both u and w are assumed to be stationary and ergodic (but not necessarily
independent of each other). The measurements of uj and y are available for
k=1,2,3,...6000.

Describe a method for estimating the auto-correlation function C**
and the cross-correlation function C¥* for 0 < 7 < 30. Explain very
briefly how this problem is related to the concept of ergodicity.  [3]
Express C¥% in terms of C*%, C** and g. [4]

Assume now that u; and w; are independent of each other, for all
k,j € Z. Describe a method for estimating the terms go, 91,92, - - - 30
from the results of part (a). Show briefly how this method can be
derived from your answer to part (b). 4]

What is the meaning of a random signal being “persistent of order
N”? What is the significance of this concept in the context of part (c)
above? Explain the following: if u is persistent of order 30, then it is

also persistent of order 20. (3]
If ¢ = (e}) is normalized white noise and uy = ex — 0.3ex_1 (for all
k € Z), show that u is persistent of any order. 3]

After having estimated the first N terms of the impulse response,
90, 91, - --gN—1, how can we build a FIR filter whose transfer function
is a good approximation to the true transfer function? Write the
corresponding difference equation. (3]

[END |
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Question 1 (3) We reaaral the CoMPLEX number
x+iy a being equivalent to the vector []e R”.

Since CLk and Lk are Cn&penalent, ﬂ\z ProLaLiQitj
A&WSL‘LJ o; 'Hle rqnalom Ve_c:lb( [2"] s 5(,;,3>=5a(x_).5b(3>

k
where §. and §, are the densities of a, and b, res-
Pective%. Since Q, and l’k are normalized 6M55¢¢": we
Y
have ;,w:,s,,cx):—z‘— e 2% , 5o that
| 2=y

2
}(x,y) = ¢

(L) Since ei% Ck s a rofq.f:eal VErsion oj Ck 3 and
the ol&hsil;j S(=,y) is invarianl under rotation (;t
Oﬂ% Jepemls on the radius r= V::c"i-y"), it foU.ows
that eec, has the same density as € (as
Computeal in rmr‘t (4.)). Thw,, eizf'k Cy s normaﬂizeal
Gaussian. SCnce, aj and "j are bnA&p@ﬂA&lﬂt af a, and Lk
(ﬁré#k), anj }u,nch‘on gﬁ aj’bd‘ is [ndg,{,e,ude,nt dﬁ arg,
}unction o} a,, Lk' Thus, the terms o} the Sequence qf
random ‘.’aréal:les ei% C ave inalef;e,aalant af each
other. -”VU.’, (’j Aeg(m'l-r‘on, this is normafiZeJ Gaussian
white noise.

(C) W‘M{‘.e hoise s erg,oolic. Hence, the averages ofﬂ\e_
whife noise (ein Ck) converge  (with ProbaLf@‘@ 1) to
E(eivkck> — eivk E(ck> =0 _4——



(d.) The complex cpnd‘uaate random Variable Correspomls

'l:b the random vector ["Zk] > wl'v‘cl's is aesu:n nonmo@-
=%
ized Gaussian. Thus, (Ck) and afsoe (g‘:”k E:-‘; )

MQLZCA Wl\ike hoise stgnqﬂs, So '“\0"

N ,
N&_,mao -'%’-kz:‘ewkf;‘ =O, with proL. 1.

Aalalwxg 'HV-S ’l:o Hre reSuet }rom Part (C), we
N .
o“ou‘n X«'_m, -’:‘T“Z_; eWk ak =0, with rroL. ].

are nor—

N-2 00

Talu‘na here rewq and imagéinary parts, we ob lain
the desired statements.

(&) ASSuMe ﬂ\a-t 'w"‘: goak+ gdak_‘ oo +gnak-n'

Then ' N ‘ N
':o ~ Z m(vk)wk = 9, Lim NE Ca:(vk)ak

k=1 N—- o

| L { ZN “

N (m t(vk)a
N"W“kum(yk)q"" S nso N2y Ry,
where each fimit on the n‘a"ft"‘mvwl side s zero,
'—_or Sin @k) in p(ace a} CoS(VI() ‘H\g I)roof is Sc‘m.'(ar.

(5') We_ comrsu‘te 407, , ‘01
c= i ’Z: u, cos (0,04 k) , S= s kZ‘ u, sin (0.04 k),
<= =

Since u, = Acos(Q04 Wsing + Asin(0.00k) @ ¢ + w,
‘-Lana, the statement ;:-om (e) we a‘;tw?n ‘Hwﬂ'.‘

1 .
Cx ZA Smcf 3 S= '%’A Coscf.

From here we can easily estimate A and P .
( ) SuHirqct A\ SCn.(0.0A k-i-?) }rom u //-\\ and > are 'H\e
ges’f-imaf:es 5rom r)ar‘t (5)), then use ergoalgc.ifj {;Z eslimate
E(‘k)k) and Var(w,‘) ly averaging. -—2_.



’w ———
Question 2.() & =2+ -t e
A
hence ewk p—d [i u: 'U': ‘/d‘z_ + ek .
L""Y‘J - v J A/Pz
yk’ Cf) ——

k
9 A
(5) I(8) has a unique minimam~— ot 6=0

1'5 and on% if CP*CI) is Cnvertéue, where rzj?
Eqwlvaeenteﬁ, Cb should have EuQQ Cb— Ez '
Colemn rank , ie. 3 inoler)endent cobumns. _ Fheo
I; this s U’te case, then @: (I)#rg ) ,Wlnere

y-‘-[g;] and - PF= (Pry D"

©)1f uir 0= 13 then the sum of the last two
Coeu.,mns 0} CP %ive,s 3 fzmes ﬂ\e_ jcrst Coeumn.) So
ﬂ\a»t U "\as no uni%e montmum . We how have
ﬂ\e N\oalee W Uz 43__ 2

k '>\+- ~k_ + uk

€ = 2 ﬁz 'f'ek
i3 A o
- 24 _ 1 _ 2
= Uk(o(_z ,52>+ p?_+ek_[1 “k]; /‘)’l +ek
s

we can estimate the

13 { _ 4
2“‘-——2_ ana -;z;_ [3’2'

From ke—re.,
f,wc nuw\Ler‘S

™~ _ | ARG M #
(d) Var (e,) = —é—?lly—dDen = 33 % (I-CPC}) )y

NN N -4
Cov 6 = Var(ek) (Cb*d)) y
— 23—

h T’:‘we Stqnalami Wctj.

9% = 400-3)

(e)



(5‘) For N measare meuts (l(= b,2,... N> we have

R e T
N e &%
N N N
CP* CP _ 2w > u: Z'uiv:
- k=4 k=1 k=1

Since U-k and 'U‘k are inalzrpe,nae,mt white wnoise

Signa&m H»ej are d’oén’t% ergoclic. T"\ereg&\z_
L E(u)) E(s2)
O P~ N|EW) EM) E(uzvr)

L_E (%) E(wv?) E(vY) |

_n\e 3x3 Ma'trix on the ria’n’t-—(/\.oma\ Side aloove
‘s iedependent of N. Thw, * grows
()(‘O()or‘tiomeyj to N. Acccr‘o!-ing 'l:o owr r'e.su.e't

at {,art (e) or, more preccseeg, Lecmue ey

Cov 6 = Var (e,) (@ ),

Cov a (s ihverse Proportionaﬂ to N 'ﬂw,, Sor‘
500 wmeasurements (inslea)l "j) 400) we expect
Cov é\ {Io {pe 5 fimes SWLa.feer.

__L,___



Quegtion. 3. (@) Dencte ¢

%X = dk'E(‘k), and
sinaer For [gkagb so that {'k: &k"'(ik' We have
Cl =E(3:%.) = E(f- %) *+ E(pi) +

E(fiotie) * E(fibie). Since @) and (py) are
Cn&ren&bnt sigﬁrw&S, ‘Hne_ ‘!‘,\No middle {‘,e_rms are 2ero

ond  We get 3Y

Ct = C:d + C{iﬁ ’

Ar'(\oj i'\g 'H\Q z tr’aﬂSee\maLlon, sz‘: Sd“ + Sﬁp .
U:) Dencte A=A+ 045‘ ..o ¥ 0-.,2-'1, B(z)=

b, + b, %' = +/{>,, z'L', then Lj @ AR f;(z) = B(z)a(Z)ﬂ/}(z).
From ﬁ:pfw we get A§=Aﬁ+A$=BQ+G+A&\r.
Accoro\i,na E\o the Prol;\zw\ S\:c&ement, A-i is stable .
Denol—ing S = 'ch + A‘13 s WE oblain

A2) 9(2) = B(2) a(z) + A(z)§(z) , (‘X‘)
ACcoro\ing 'Lo our resuft Sr‘om Pc\rt (_a) we ‘\ava
$S wwr -412 ~vv

5%=g + |A ‘ svv Bj the ‘)rol)\e,m shatement
we have Swwz 0.1, hence Sss? 0.1. Since § is
) t\\AS mekes ‘H\at S (an LQ represe,v\te.o\ as

A A o 8
r— —
8 = =€, ;,E s‘[‘n“@., e white nhocise ,

Séncz, — s stquz, its ’meuese. response (;k)
tends to zero and  we can approx.‘maf:e - "_j
truncﬁtﬁ'\a i{?S impuese res‘)onse H

=) Az L+ ;45‘-,;;2_51”, * ;nfn:z‘,n(z).
The coeffcccent ?o has been taken =1, which is
POSS’L()\Q Bj requQ.i.ng e. Now (*) Lec,omes
A@YE) = B@ U@ + A, (8@,
whicdh (s the desired ARMAX model . —5—



(C) Denol-{ng C(z):A(z)En(z), the ARMAX e:.-waJ-v:o—n
}fom part (‘a) is A9 = BQ + CQ . Bj aSSum{)’-ion, A'
(s 5‘q“¢~ Since E:' }’ﬂ,m ’)art (b) is S‘RLQ, we Maﬂ
assume that ahe .':__.3: (s shable. Thus implics that C-i
(s stable. Divide the ARMAX equakion (13 C:
(A/C)B:CB/C)/(\A +2, ana{ [n‘raobhﬂe U«e fM'\Abal-e responses
f A/c ond B/c :

AB® - . UZ 4 olyZl ..
C(2)

B(z —f -
E%z?): PotPuZ + fZ%4...

Since C-.'1 s S‘abte, the Se?wnces (dk) Andqﬁk) ‘{"End to
Zeco. He,noe., Lj ‘runca_[-z‘ng A/C ond B/C to ,\nanovw‘aﬁd
(u’n z_') 49f a ‘\4’9‘\ ord‘e}t m, we aet wd, qpprox“mgtz‘ons °7°
t hese Jancl—:‘ons, and the a,;prox.[mo.fz ARX medel

Ikt G Yt hYpg e Y T ﬁa“k Pl Pt

(d) We have b
Y, =['yk-a Yoo o " Yem Bk Uk o uk_mj ;m + ek .
- ~ ] 0‘
| % ;.
Deno‘tmg py‘ - [~ (?4 ] - : .J
y=[2 |, =T L f (gpere)
| 92,000 | F20,000 | ¢

the or'l:ima& Jeast squares estimate of O is 8=¢#g,.

(6) A_Ster Lavina esi‘ima‘l:ecl 9 5‘rom p"rt (cl)) we can esl-imaﬁ
(ek) us:'na the ARX earm{:ion. Now we rewrite the ARMAX equ-
otion gram H\e t‘op 05 ‘Hu's paae o5 yk: ;}fkg_,.gk ; where

N —— - -
CPk = 7Yt "Ik2 o 3L—n Up Upoyoor Bpp Cros Chog ou. ek_,._],

(4%
GT:L a_4 az vae a.n bo b4 co bn' C4 CZ .,,Cn-],

and 5):.: ek,,_ new mo&&g error, Fr'om here we Can es’&‘maﬁ

NS

O in the usual way. —b6—



QUEStlon“. (3) The Cmp&Aomce Z of the three
Comrone,nts in pﬂraeeee (s %V&n \’_j

A _ 1 1 C;RLSQ'-'I'LS + R
Z(s)—cf5+ R TLs T RLs ’
RLs
So 'H\out Z($)=

CfRL s’+ Ls+ R
—”.,e_ ‘l:ramsgﬂ' function }r‘om u to ¥ s

Z (s) RLs
GGy= s -
Z(s) + §S RLs + L‘&S(CjRLS +Ls+ R)
A
- LsCs — bo
- Ly +L 2
s2+ g 25T ST+ a5 +a
RC; LS'CS'L ‘

Note that Lo s ‘(nown, while a,,a, are unknown. G

s sfabee, [aecaase a,4 anJ Q, are >0,

(b) The simplified  cirewit s of order 3, since it has

3 independent energy s'b‘orage elements : L;,Cf and L,
But G (s o} order 2 on@. -”»is alisc,re,’ooij is due b

an unobSerVaB‘e e,igenvector' 0} H‘le Syslem matn:x,
which is actual

b an equilibrium point (i.e., it corres-
()onds to Hle ex?env zem): all voL‘l:ages are zefro
(s }Lowing. ‘L’hrough Lj (S—rom left
down Hnrough L. to the grvund.

(C) We A@Y\Ote bj Ge(l:wk) the_ Va,eu_e_s o} fl-'e ‘ér‘amsje,r
j—wnc{:‘«bn oletermine.a‘ using

a s,‘nu_soidaﬁ 5i3nwe u (here,
k,:l,?.,... 25). We “\aVﬁ

and a current ioio

to ro‘ght> and then

b, = [(ﬂwk )2 ta, Cw) + ao] Ge(fwk) — €

where ek are U\e. eq/w\.t[on eérrorsS (d-ue to menﬁurement
errers and model mismatch). —F —



Thua, 2 _, . a,
gwk) G (w,) - LOJ.—_ E_cuk -:1] G (cw@[%] +e,.

v Y ey —
e Pr B
(d-) We are 5earok4:n8 S-or the ortémo.a redd 6. We

Put gk = Re Yy > ?ék = Re ka Sor k=4,2,... 25,

~ ~o_ - . 50.
ond 4 = Imy, oo &= Im gy ps Jor k=26,2%, ... 50

The new error terms & (k=1,2,...50) are defined
siewlarly. Thea U, = G @ +¢, for k=14,2,...50,
ond :ﬁ'%: = 225',\85: _,-"CI.P: op’cz:aﬁ 8 (which minimizes
g‘é’,f )';,;s gzve'fflj 6=, where §=[3,,-s];
& - [i ] , F (VP From the estimaked
Pso

a, we estimale R, ond then (}om a,o) L.

O asfsn] ool eebuaiomo

o

d AT -
(5)  At= AT, pd (AT-1)A™B,
G ()= C(2I-A*)Y1g% 4 p
(‘H'us is exact J4~sc_re{:£sa.{:ion>. Au:er‘nal'iveg,

we %et a 9ooal a’)prox.imah‘on to Gd 6_7 Tuska's
§OFMue¢ ; 4
~ g2 .21
G (2) = G(‘T .z4-1> g
Vaﬁ&A if the oles o} G are muc,L\ S'Vmﬂeft
than @i‘:% values of (:ha ZTC/T, the
SQMPuna &ewn?j n rad,/sec, In the specie(‘c_

ex;\mp\e, G is si:aue hence
—8 = o G% is stable.




w
Que St Lon 5' -i—a- 9 'U'—:i: ’-y
(a) IS U and y are ()oint% e.r%ooh‘c., 'H‘Len ﬂ\e eXPeciation

05 any ch,mction 05 U and Y (wkfr)\ may olepe,nal on
current and past vaﬂue,s) can be arp(‘ox%ma,td Lﬁ
a\;eragéng o'\q/er o Qong time . Thua, Qe't example, E(“Q:
= ,\X;:r: -,i-‘_:_zl‘ O where the abreviation q.s. ("a@mast
sure") mi,qns that the ecfmlztj holds quith proLALE&E’ i.
A similar jprmub holds  for E (), oLviousé_aj. Denote

o

u’k:“k_E(‘*k)’ ﬁk=3k"E(gk)7
then §or any TEZ, ergoa\i(,ifcj implies

C::“:E(ﬁ.&_r 224 4

(W) fom 2

C¥ = E(g-8,_)% fim L

z (% e éﬂ_«:v:o N

ln, prac{il'ae we L\ave, av\e«a &Gnéte@ vvmmj ciata.) So

>

H\at in ?\lﬂ ‘H\Q o»‘oo\/e 5ormu.L0;S, We ha/ve fo re,pLAce,
a+N
Lim AN_Z with _I\‘TZ , We»e)\e N is fh’»@e (aqu the

N-— oo )‘.—_‘4 i—a

6fornrg ‘l:t’me a Ae,)eia'S oh ﬂte Ap»‘ta. H\a/r we. kave) Ih

our ‘5()66(:?\"0 Case) WAEJL L{k and{ y"— are 9,"\/&” _}DY‘ k:

= ’1,2.,... 6000 Qﬂd T = 0,4, s oa 30, we. o‘,),,raximQE

uu i 6000 - ) T
C": ~ m;;-h;(ué u)(uJ-t u) )

where @ is the averape Oy"‘ﬂ ovailnble Y (so that wR

;\V/E(ukp' A scmilan ap,oroxjma?t:on can be used for Ciu.
(b) C¥=E(y% . )=E@, 4 )+ E (8 4.,) =

= Czu + C:_’-u , SO that C%% = C"™ + (¥

= 9*Cuu_+cwu’ —9—



(C) IS U and w ace Eno\epe,w)\ent oSr eoch oH'\er, then
Cw’u. :O, So ‘ant Caccmin(j 'to ‘H\e resu,Q,t ﬁom r)aft
O’D, Cc? = g% C" . This can be writlen as an
gngfinif:e mqtr'cx ea(untiom:

C, cu ... % rcgﬂ

(3 )

C:‘“ C:“ Cu: N | 94 C?u
C:u C:u Cuu“' 92 Czyu

| J G B L -
Since 2k—~>o (L_ﬂ s‘taloiedij), we Can ar)’)roximate 3’62’10
Sor k> 30. Lookima on()j at the §£rst 34 e,c},uo,l‘.ions) we
how 8et 31 ea{oua{iions 'wLH\ 3.1 uanowns 907343-"330-

Tke Coe%»taex\ts C,.ucu anal C%: are not known e,)cuc,t%’ Lu.}'
H‘Q’j have been e,stémateal tn (a) Recall that C_“:-:.C:“,

(d) w s persiste\/{t of order N i the NxN truncation
05 the in}—tmﬁte matrix from (-)é %*) is invertible, l}
tlru"s (s 'H\e case, anol ‘H\e @effcaents in 'H\,g g;ru_piion
have been estimated suﬂ{aen% occurately, then we can
QOLVB the truncated ec;/-ca"iion &ar‘ 90,94,... 3N-,‘1'

The matrix Srom (%%) s =0, hence any NxN
truncation o}i is also =20. A matrix P>0 s inver—
tible U} and onLj L} P>O, L.e., Px > 0 }cr any vec—
ter x#0 of matcl'\cn,g dimension . This implies that if
P>0 and we truncate P, keeping definition of P>@
on?j ils }Crst ™M rows oand first m columns, then the
truncated matlrix is again >0 <hence, invertible ).

(&) G(r) = (4—0.3:21)8(1.)) S“(z)=11-0.32*|%, it is easy o
see thal 11-0.351|? 0.7 Sor all z with [2]=1, hence the claim.

(S)We A.i§§e,rence eq/u.ajtion oS the FIR Sieter (s <H=in‘>ut7>

U'=out/>ut
Ve= Qo%k ¥ QU ¥ 92%kez 0 T ot Mkt — 10—




