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E4.27, C2.3

A continuous-time plant with input u and output y is known to be composed
of two first order systems connected in cascade, with the transfer functions
g/(s — A2) and 1/(s — A1), see the block diagram below. The real numbers
A1, A2 and g are not known, but we know that

1
,’\1,<19 |’\2l<17 §<g<27

so that for [s| >> 1, the transfer function from u to y is approximately
g/s%, as for a double integrator. The signal g between the two blocks can be
measured. An external disturbance d acts on the plant, in addition to the
control input v, and we would like the output y to track a reference signal r.
We connect the system to a controller described by v = K3 (r —y) — Kagq, as
shown in the block diagram, where K7 > 0, K9 > 0.
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(a)  Write the equations of the closed-loop system in the state space form
& = Az + B1r + Bad. It is advisable to take y as the first component
of the state z. (5]
(b)  Determine the set of those controller gains K and Ko for which the
closed-loop system is stable, regardless of the values of A1, Ag and g in
the specified range. [5]
(c) Take K; = 50 and Ky = 20, so that the closed-loop system is sta-
ble. The disturbance d is an unknown constant. We have access to
measurements of ¢,y and r taken at sampling times ¢ = hk, where
k=1,2,...30,000 and h = 10~°. We denote y;, = y(hk) and simi-
larly for g3 and rg. The reference r may be assumed to be constant
on each sampling interval (since it changes slowly). Describe a least
squares based method to estimate A1, A2, g and d from the given data.
Hint: discretize the two blocks of the plant separately. By considering
the left block only, explain how to estimate Ao, g and d. Afterwards,
consider the right block and explain how to estimate A;. Recall that
for very small € we have e =~ 1+ ¢. [10]
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E4.27, C2.3

Assume that ¥ is a stable discrete-time LTI system with input signal v and
output signal v. The measured output y is corrupted by the noise signal w,
so that y, = vg + wg. The statistical properties of w are known: it can be
modeled as filtered white noise,

1 5

w = Z€, Z(z) =cpg+crz7 ... +ec5z 7,

where, cg,ci,-..c5 are known and ¢ is Gaussian white noise with E(eg) = 0
and Var(eg) = 1. (w,é are the Z-transforms of w,e.) The zeros of the
polynomial ¢(2) = coz® + ¢12%. .. + c5 are in the open unit disk.

We have to identify X, based on the measurements of u; and y;. We would
like to model ¥ by a FIR filter of order 20:

v = boug + b1ugp_q1 ...+ booug_20-

(a) Describe the system by a standard MAX model (recall that MAX
stands for “moving average with exogenous input”). By introducing
new signals, reduce this to an X model in which the unknown coeffi-
cients bg, by, ...bgo appear. (4]

(b)  Suppose that in the X model from part (a) the equation error due
to model mismatch, denoted by e, is white noise with E(eg) = 0
and ey, is independent of ¢; (for all k,j € Z). Assuming that the
measurements u; and y; are available for k = 1,2,...6,000, describe
a least squares based method for estimating bg, by, . ..bgo using the X
model obtained in part (a). State clearly which cost function you are
minimizing. [5]

(¢) With the assumptions from part (b), how could we estimate Var(ey)
based on the available data described in part (b)? Hint: first estimate
Var(eg + ex). (5]

(d) Suppose that we want the estimation of the coefficients by, b1, ... b20
to be performed on-line, in order to track these coeflicients if they are
slowly changing. How can you modify the least squares minimization
problem that you have solved in part (b), to ensure that the algorithm
gradually “forgets” old data? Describe a recursive algorithm which
minimizes the modified minimization problem. (6]
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E4.27, C2.3

Suppose that u = (ug) is a stationary and ergodic Gaussian random signal
in discrete time (k € Z). An LTI system with transfer function G has u as
its input signal and y = (yi) as its output signal. We model G by

b
z+a’
where the parameters a € (0,1) and b are unknown.

A company (your employer) requires you to produce formulas which give
good predictions of un and y, based on the measurements of u; and y;, for
k=n-1,n-2,...n—50. The company supplies you with the measurements
of ug and y for £ = 1,2,...5,000, and you must design your prediction
formulas using these data.

G(z) =

(a) Denote by C"* the auto-correlation function of u. Explain how to
estimate p, = F(ug) and Cy for j = 0,1, ...50. (3]
(b)  Explain how to estimate the coefficients of a stable auto-regressive
filter of order m, with transfer function denoted by =, such that u
can be regarded as the output function of this filter, when the input
function of the filter is white noise e = (e;). Explain how to estimate
tte = E(e) and 62 = Var(ey,) after = has been identified. (5]
(c) Explain how to obtain the formula for the prediction of u,, denoted
by Up, using the results you obtained in part (b). Assuming that you
have identified =, ue and ag with very high accuracy, give an estimate
for the variance of the prediction error uy, — %y. [5]
(d)  Outline a least squares based method to estimate a and b. Do not
give any proofs. (3]
(e) Explain how to obtain the formula for the prediction of v, denoted
by ¥n, using the results you obtained in the earlier parts. Give an
estimate for the variance of the prediction error y,, — 7.
Hint: do not rush your answer, think carefully which data are available
for predicting y,,. (4]



E4.27, C2.3

. A power generator is represented as a voltage source of voltage u in series with

a known inductor Lg. The load circuit is not known, but we want to model it
as the parallel connection of a resistor R, a capacitor C' and an inductor L, as
shown in the circuit below. The values R, C and L are unknown but positive.
For the purposes of the load identification, we may vary the mechanical speed
of the generator in the relevant range, which results in sinusoidal voltages u
at various frequencies (in the relevant range) and various amplitudes. We can
measure v and also the voltage y on the load. We cannot expect a perfect
match between the true circuit and our model, but we would like to get a
close match in the relevant frequency range.

(a)

(d)

w
T 7
L9 i
RY ¢ L
7777
Compute the transfer function G of the model circuit (from u to y),
in terms of Ly, R,C and L. Is G stable? [5]

Suppose that by measurements (using different frequencies for u) we
have obtained estimates for G at 40 angular frequencies ws, ...wyq,
in the frequency range of interest. Using these data, how could we
estimate R, C' and L using a least squares based algorithm? Write
down the formulas which give the estimated R, C and L, taking care
to define all the symbols that you use. Hints: To avoid writing com-
plicated formulas, introduce suitable intermediate variables. Avoid
getting complex numbers as estimates for R,C and L. (6]

Construct a realization of the transfer function G, of the form z =
Az + Bu, y = Cox + Du, where A, B, C, and D are matrices. What
are the eigenvalues of A, expressed in terms of quantities that are
known or have been estimated earlier, such as Ly, R, C and L?  [4]

We connect a hold device (D/A converter) at the input of our sys-
tem (i.e., we use a digitally controlled converter) and we connect a
sampler (A/D converter) at its output (e.g., a digital voltmeter), both
converters working with the sampling period h. How can we compute
the transfer function of the resulting discrete-time LTI system? There
is no need to perform any computations to answer this part. (5]
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We want to connect a stable linear SISO plant with an unknown transfer
function P to a PI controller, in order to ensure tracking of a constant ref-
erence 7, as shown in the block diagram below. The DC gain of the plant is
known to be positive. The relevant frequency range on which the closed-loop
system will operate is from 0 to 1000 Hz. At higher frequencies we expect
P(iw) to be practically zero.

We want to find controller gains K, and K; such that the closed-loop
system is stable, and Ky, K; should not be too small (to avoid a very slow
response of the closed-loop system).

(a)

d

+
A Kp+ K? P(s) -

In order to choose suitable parameters for the controller, we would
like to plot an approximate Nyquist plot of P. What sort of iden-
tification experiments could provide us with the necessary data for
the Nyquist plot? Describe these experiments very briefly, and also
describe briefly the computations necessary to process the data from
these experiments. 6]

Suppose that Kp, K; have been chosen such that the closed-loop sys-
tem is stable. Suppose that the reference signal is

r(t) = 30(1 — e~ %) + 60te® cos 300t

and the corresponding output signal is denoted by y, as shown in the
block diagram. Assume that d = 3 (constant in time). Describe the
structure of y(t) for large ¢ (i.e., in steady state), computing all the
relevant constants. (5]
Assume that the closed-loop system is stable, 7 = 0 and d is a station-
ary ergodic random signal with expectation F(d) = 3 and a certain
known power spectral density S9d Is y a stationary random signal? Is
y ergodic? Compute E(y) and write a formula for computing Var(y)

(the power of y), in terms of P, K, K; and gdd, [6]
If Kp,K; and r are as in part (b) and d is as in part (c), is y a
stationary random signal? Give a very brief reasoning. [3]
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Assume that v is a stationary ergodic random signal with the expectation
E(v(t)) = 3 and the auto-correlation function :

Cv'v(,r) — e—-100|'r|.

The signal v is sampled with a sampling period h = 10~%, and the resulting
discrete-time signal uy = v(hk) is applied to an unknown stable discrete-time
LTI system ¥ with the (unknown) transfer function G. The output signal of
Y, denoted by y, is corrupted by measurement noise e, such that in terms of
Z-transforms
g=Gu+é.

The measurement noise e is white noise with E(eg) = 0, independent of v.
The measurements u and yi are available for £k = 1,2,...5,000.

(a) Arewu and y jointly stationary? Explain very briefly what this concept
means. Are u and y jointly ergodic? Again, explain very briefly what

this means. 3]
(b)  Compute the power and the power spectral density of the discrete
time signal u. (3]

(¢) Describe a method for estimating E(yy), Var(yx) and CrY (the
cross-correlation function of u and y), using the available measure-
ments ug and y. For what values of 7 can we obtain reasonable
estimates of CrY? 3]

(d) Assume that the system ¥ is sufficiently stable so that its impulse re-
sponse (gg) is negligible for k > 50. Describe a method for estimating
the first 50 terms gg, g1, - . - g49 from the results of part (c). [4]

(e) What is the meaning of a random signal being “persistent of order
m”? What is the significance of this concept in the context of part
(d) above? Is u persistent of order 507 Give a brief reasoning. Hint:
use your result from part (b). 3]

(f) Compute Var(yg) in terms of the impulse response (gj), the cross-
correlation function C%¥¥ and the noise power Var(ex) (the latter is
not known). Hence, give a formula for estimating Var(e) in terms of
quantities estimated earlier. [4]

[ END |
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A
= L9C — L" .
o, _j_ . L.+ s*+ a,s +0Q,
RC LoLC
~ < —
a4 a,

Tke, c,oe%c,ients Lo; q_'\)a_o ore u.nknown) Lu)’

\:t 'S oLec\r {:ka} 'Hnej are osit’iVE., ke_nce
[6]6 (s stable (Le.ca.u.oe_ a,> O and a4>0).

(L)) The troms?o; Squ-on G AJCSC.DL$SEA a\OaVe
S O“Qj a wmodel. We denste Lj Ge(dwk)
{;k,e, exr\erimentaug AC{:er‘nM‘neaL value s a&ﬂ\e
true tronsler funckon ot the g"WQZQS W,
O:ke_se chﬂwe/; are Su.\aject to Me,asure_me.vx't
&r‘rors>, We have Sor k::/\,Z,... Ho

by = [0+ @ @) + HIACHELIE



Wt\ere e'k rerrase,nts H»e wmlm'neal e%zc‘f

0;— mode Qina and measurement errors Cek
s comp Le.x), We rewrite +his: .
a

ka)zGe(‘“’k)=["C“’kGe(‘“k) - G(iwy) 1]' a, |* €

" — ~ | bo |
* B

which fooks Like o standard loast sguares
dentification problem with O the veclor of

unLnown paramefers. .Sc‘nc_e /71; am‘al ka are
COMI;Lex,, but we want 0 to be real, we are
Sea.rc‘u:n.g ﬁyﬁ the olaf:ima,e F&aﬂ vector 6
which minimizes [e,|°+ les|*... + leyy | For
‘H\&s, we infroaLuce.

~ Re D fy\ k=1,2,... ho,

cfk I Pratio Sor k=144,42,... 80,

and stm%r@ we iatroduce %,’é’k fg\_ k=14,... 80.
Then we g,et 80 read ar?wa/'r-‘ons %’:cﬁe+ 3‘2
Here , 1€, 154 18217 ... 4 1€5,1% = les] +leg .. +leyol)
so that we are sv':cf,@ W\ZMMiZCn& the same Cos't)
bu{' now & is ;arceal to be real .Tl\e‘ o,;fimaﬂ

estimate 6 (s jow\o{ ly Cnl-ma(ucfng o
[74

- ’V‘ -] - ~
<P=[j ], CP#:@*(P)CP*’ M=
fa d feast the e
as in 'H\e stanalar S S re or no(
1 by quares Y, a
then 9=Cbﬂ:')2. | —

’




A g'te,r ka,vtl\g EStima,jceJ. a,’) Q, Q.ﬂd Lo , Wwe
Compu‘lze the estimated C (fmm bs ), them
JCl\e ESL‘MA{JCJ R (grovn ay ) and pn% L jrom

A, = 4 R = ._'4'— L= L_g,
’ ¢ BoLZ» , q,C ’ apLaC-i
< I have omi H’Cal ’H'\e. l’tats on toP Qf eaok

53"\501' in the Iast three Sor‘mq.ea.S).

[?c) o 1 | 0
A - \ B S ] , méni:vua,o_
Co:[bo OJ ) D= ioja G

the ec%anvoﬂm af A are “HiVai-la, .
2

[5]
(d) _n‘le C)Lact AfScrett'ZatCon is *
AJ"—‘eAh Bd-'—"— <6Ah-I)A-iB,

?
G4(2)= C,(xI-A*) B* + D.
Al.l':e,mm‘:ive@, we mgj %t o 9”4 appro-
Xima'l:ton 05: Gd Lj Tus!{r\ 's j:ormuﬂa.‘

64(2)3 G(i 3:_‘} :




[¢]
QUES‘{:COV‘L 5 (3) _”\e io\ewh&{whon e,xv)e.rime,nts

Cawn Le Ao\ne applﬁiné stnusoio‘.oﬁ Enputs a:l:
Various grewv\oces in Hr\e_ reQLVa.m{: V‘aﬂ%e
(w < .215-/\000), N ora\er 'l:o meoswucre ‘t\r\e Cor—~

respono\iﬂg goin A, and P\wase shi§t Po

‘Cf"ﬁ‘*P y’% "S—"'CN

sin wl —- S > ‘SN

‘Deno_tt‘ng T = Z7t/w, we Compu'lie 5or Lqrge_ ‘l:o>0

t, +NT
N = S “é(“ o wt dt =Aw@3‘fm %I:
to
t,+NT
° . NT
Sy = (t) sin wb dt =A sin —_—
N St-., ] 0" Go 2

From here we can Compu-:*-e- Aw OW\J ‘-fcd y

5] ond heace G(iw) = Awe“fw ,

(b) Denote C(s) = Kf’ + Ki/s (Hm‘s is the trans-
S'er 5"‘-‘""1:‘:‘3"‘ ﬂ Hw-e PI Con‘i’mller), ‘H\en tlﬂ.e_

C\-OSCA"/QGO',\ tr'anSS‘e,r gu,r\otCOV\. g—rom r "Zo g,

(5 — CGHP(s) assumed to
GA(S) I+ CEP () (Ee. stable )

anA grom al to 2:

G — P<S) aL (] staLLe, .
2'(5) ] + CGP(s) ___43(__5 )




We have assumed that P(0)> 0. Since

C(o)=w, it follows that G,(0) =1, G (0)=0

The relereace r can be o\ecomyooseal an
r@)= 30 + e(t), where Lim e(®)=0.

k~¥co
—n\w;) S—or Qarge values «9f 'l:, Y will e
o c,onstomt 9(3\191\ ‘)‘j
y(t) =Gy (0)- 30 + G,(e)-3 = 30
(thes shows that the PI conkoller solves

6] the problem of tracking o constant r).

(C) l"=0, d.'-:sta'honar:j, ergoc\ic random siénqﬁ,,
E(a(,) =3. Then [;] (s s{:aféov\arj av\o\'er%oc\icJ
cn parkau.f.a)t, g_ has these rmpperi:ce.s, We
have E(y)—"‘- GZ(O)E(aL> = 0-3=0, Bj
Wiener -Lee, S% = |Gz«|2»5°u, hence

| - .2.17?8 IGz(aw)}2 S"u(cw) dew

3] '°°

(0[_) \5: r s o %Lven S—u.nc{?o‘on (35 {:Cme), and,
d s a S{Za(?c‘ona:j random S;'g nal 5 denote
L. Y- ond the componen ts 1
o\ie j{:o r analgj,. Yr is ,a. given #(no{ﬂ
COnS'l"d'\t) JuﬂoLl'ou\ and AL is a S!a'{.'[ona.:j
randowm Sig naf . Now E(y (t)) = yr({:) + E (yd (f))



_”\e 5eCanJ COM(}OV\ZV\t E(yd({-)) (s
Consfant Cac.("-ua% {t s zero, sSee par't (c))
50 that E(g(t)) is not constant. Hevxce> Y
Con no{? \Je S'\:atio nary.



Ques{ion 6 Tl\e. Ll.ocl: o\iagrum C.or'respona\.ing
0O ‘Un.e PFDL\QW\ Sfate.me.nt:

€ I e =white
s 78 w + noise
A/'D G " y Cﬂdepe_n:

dent a; 'Y

[3]
(a) (Ak:: 'U'(M() (s S'Latt'onarj a,nJ- Cr'goiic, If)ence

[M] Ls s{:atéonm:j anol ergoJic . Since_ e is

w

cno(zpenafevn‘- af v, it is also dependent of
] (which s gencrated from ). Hence, M
(s Sfafiouqrj ana( ergaa[zc, Sta.'l’.c'onaril:j 05_
[;] (ﬂLSa ocu.e;l yaint sia'llionqr,:fj 4(1)3::)
means 'H‘\At the austri‘m{—'ion,}unoi!‘ons Of

[“”M] a.no(' [u'm.-r"cJ
y‘”’ yn.;-'::

ore 51/_‘4,2, fy\ ang com L[r.;a't“oﬂ af m, ')’I-,T € Z A
E rQOAiCi{j 0; [;] (a.LSa called yvint erge -
A*‘d‘lj “> means  that fof any  measu rable

Eu.v\o?‘:c'on 9 o;— Severax varzables)
| N ,
—/ /r“k,:!’”.f“kn)) = fim L 8({;«,‘#9.]"“[%&))
t.\g \‘_35 l_%k“ N —» 00 2Nj=-N kit 9ku+j
’Lu'tu\ pro LAB]‘Q(% 1 (i-e.> expec’:ﬂz‘ons are
e,w,J), )co Ln{%‘m'ie fc‘me owera.g%).



[3]

(19> We L\ave CL;: = C”"'(h,k):._ e"400hlkl)
where h=40" [n particadar , the power
of u s Var (u) = C:“ = 1. The power
Spacl':raﬁ a{e«nsifj Uj W is (Sor lzl=i)

ahe = "IC nu
57 (2) = E: z €, ;:;tjooh
..4 00 k
— Z z—k e"400h“<l + Z_" (2_400“)

-0 k=0

=

—
—-—

—__—.izk'ok +Z :[krk

—_ zl_r) z.—/} Lewse
_  ZP +Z7P .p +1 X2'=2Z
T (z-p)(z-p)

— (Z+2>—2P7_ [)-l-i

(A'\j of the fast

rww,(ns iS o«

9000\ answer )_’ 4?-—-




[3]

C W (M “

() e can es{: ate E(gk) and C:7
usi:\g ergoo‘ia’y, as S;I,Laws :

S ) N /‘; | N-T
E(yk)’wzyk ? C-,; =[I._;Zukyk+'z
hore & = k=1 ., P k

re w, =W —3, Y =4-E(y), N

T<<N. Similarl i N, o
- Y Nar(g)= 52 @)
(d) We can esf:mate 90 3 94 g eer 3‘13 ‘Zj So[.véng,

5,000 and

S auu_ uu uu [ /\u -
Co C‘l Cha %o Fcoa |
uw uu uu 2\
Ca 'Co C.,3 194 = C:”
wa uu “u : /.\
Gy G o Co | L9 C3
. . ww
This  is because Ck = C;? , Since Y=

[3] = w+e O'\A e (S {nA;e_penAevd; qf w.

(6) uw s pers:‘sienf qforaler m ;S." the mxm
Toepu'z w\od;ri,x Skoum aLave {J}r m =50

(s [n\{e,rtilale. ]; Suu. s rational ond

G4 () >0 for all ve (-&,m], then u is

ersistent  of any order — this (s the case
[‘1] Sor our U, 05 Cai Le Seen frow\ pqrt (L).
<§> Cw:=§*cuw= 5 * Cug, hence C;rwz

:—.Z 9,‘6:3’ = Var (w) Since e 5 (nde-

k=0
evm\&wt 0& w, Wwe have VQr (y)::\/ar(w)

+\/3r<e,>’ hence Var'(e)= Var(g)—ZmC:y.
k=0



