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1.

Consider the system with input u and output y modeled by the ARMAX
difference equation

Yk + 01Yp_1 + a2Yg—2 = b1ug_1 +ex — 0.5ex_1,

where a1, a9, b1 are unknown real numbers. The signal e is white noise with
unknown variance and such that E(eg) = 0.

(a)
(b)

Write the formula for the transfer function H from e to y. For which
values of ay is it possible that H is stable?

Assuming that H is stable and u = 0, give explicit formulas for E(yy)
(the expectation of y) and for F (y%) (the power of y) in terms of the
impulse response of H, denoted h = (hg, h1, ho,...), and in terms of
the noise variance 02 = E (e%).

Introduce new input and output variables u" and y%" such that (i) u”
and y¥ can be computed from u and y, (ii) u and y can be computed
from w! and y¥, (iii) the relation between u®", y¥" and e is described
by an ARX difference equation with the same unknown parameters
a1, ag and by. Write down this ARX equation.

Describe a least squares based method to estimate ay, ag and by
from measurements of ug and y; for £ < 200. Give a formula for
an unbiased estimate of Var(e). Hint: use the variables uf" and y¥
introduced in part (c).



The proposed mathematical model of a static system with two inputs v and
v and with one output w is

-6 ()- 0

The variables u, v and w can be measured and «, § are unknown parame-
ters. We have 50 measurements available from experiments, uy, ug, ... usg
and similarly for v and w, and we have 0 < wg < 1 (so that they do not
contradict the model (1)). Because of measurement and modeling errors, the
measurements do not fit any model of the form (1) exactly.

(a) By defining new variables if necessary, rewrite the model of the system
in the form y = @10+ ey, where yi and @y, are known, @ is the vector
of unknown parameters and e are the equation errors.

(b)  Write the formula for the vector of estimated parameters f which
minimizes e% -+ e% R e%o.

(c)  Assume that er, e2,...e5p are independent and identically dis-
tributed. Assuming also that F(eg) = 0, give a formula for an unbi-
ased estimate of Var(eg).

(d)  Still assuming independent and identically distributed equation er-
rors, give a formula for an unbiased estimate of C’ov(é), where 8 is
the estimate from part (b). Note that Var(eg) is not known, but it
can be estimated, as was required in part (c). :

(e) If, instead of 50 measurements, we would have 500 measurements
available, would you expect ||Couv(f)]|| to be larger or smaller? Give a
brief reason for your answer.

(f)  We return to the problem in part (e) in a more precise framework.
Suppose that each of the sequences ug, vy and e comnsists of inde-
pendent and identically distributed random variables, and the three
sequences are also independent of each other. Let § be the estimate
from part (b). If, instead of 50 measurements, we have 500 mea-
surements, approximately how many times do you expect Cou() to
decrease? Give, briefly, a reason for your answer.



3. We have a stable linear system with an unknown stable transfer function G.
The relevant frequency range on which this system operates is from 0 to 300
Hz. At higher frequencies we expect the transfer function of the system to
be practically zero.

(a)

(b)

Suppose that the input signal is
u(t) = 2(1 — e 3)[1 + cos 7t] (2)

and the corresponding output signal is denoted by y(¢). Suppose

that the limit limp_, % fOT y(t)dt = 10 has been measured. What
conclusion can we draw concerning G (e.g., its value at some point)?
If we give the input signal u of (2) to our system, what sort of
output function do we expect to see a long time after the start of the
experiment (i.e., in steady state)? Express this output function in the
time domain in terms of the transfer function G.

Assume that we want to incorporate our system into a feedback loop,
and for stability studies we would like to plot an approximate Nyquist
plot of G. What sort of identification experiments could provide us
with the necessary data for the Nyquist plot? Describe these exper-
iments very briefly (assuming that looking at an oscilloscope is not
accurate enough), and also describe briefly the computations neces-
sary to process the data from these experiments.

Assume that the input to the system is a stationary random signal
u with power spectral density Syy(iw) = (1 4+ 4w?)~! and that the
estimated power spectral density of the output signal y is Syy(iw) =
(1 + 2w? + w*)~1. Determine |G(iw)| (as a function of w) and try
to find one possible stable transfer function G whose absolute values
match with those that you have determined.



4. We want to model the output circuit of a power converter by the simplified
circuit shown below, where the filter inductor L and the filter capacitor C
are known, and the load resistor R and load inductance L are unknown. We
can choose the waveform of u (which is the output voltage of the converter)
and we can measure the load voltage y. R and L are to be determined (they
should be positive). We cannot expect a perfect match between our true
circuit and this model, but we would like to get a close match in a certain
frequency range.

u Y
power 211118 &
converter [_}
(Variau.e C == R L_.
VO\.‘ta e }
2
Sourr_e) 777

(a)
(b)

Compute the transfer function G of the model circuit (from u to y),
in terms of Ly,C¢, R and L. Is G stable?

Suppose that by measurements that use sinusoidal u, we have ob-
tained estimates for G at 20 angular frequencies wi, ...wsgq, in the
frequency range of interest. Using these data, how could we esti-
mate R and L using a least squares based algorithm? Write down
the formulas which give the estimated R and L, taking care to define
all the symbols that you use. Hints: do not rush to write formulas,
first think carefully what is known and what has to be estimated. To
avoid writing complicated formulas, introduce suitable intermediate
variables. |

Construct a realization of the transfer function G, of the form # =
Az + Bu, y = Cz + Du, where A, B, C and D are matrices. What
are the eigenvalues of your matrix A, expressed in terms of quantities
that have been determined earlier, such as L, Cy, R and L7

We connect a hold device (D/A converter) at the input of our sys-
tem (i.e., we use a digitally controlled converter) and we connect a
sampler (A /D converter) at its output (e.g., a digital voltmeter), both
converters working with the sampling period 7'. How can we compute
the transfer function of the resulting discrete-time L'TT system? There
is no need to perform any computations to answer this part.



5. Consider the discrete-time LTI system with transfer function

(a)
(b)

(f)

(2)

37271
1-1.72"14+0.72272
Write the difference equation corresponding to G (this should be an
ARMA model).
Determine if G is a stable transfer function, and compute its DC-
gain. Is G proper? Is it strictly proper? Is it a FIR transfer function?
Consider the signal u given by ug = 0 and

G(z) =

2
wp = (h=1,2,3,...). (3)

Compute the Z-transform 4(z).

Let y be the response of the system to the input signal u given in
(3). Assume that the initial state of the system is zero. Compute the
Z-transform §(z).

Explain why the signal y from (d) is of the form

ye = c1(0.8)F + ¢2(0.9)% + ¢3(0.2).

Explain briefly how the constants ci,c9,c3 can be computed, but
do not compute them numerically.

Assume that the discrete-time transfer function G given above has
been obtained by a discrete-time identification procedure applied to
a continuous-time LTI system, via sample and hold blocks (i.e., D/A
and A /D converters) with a sampling frequency of 5 KHz. Give a for-
mula for an estimate of the transfer function P of the continuous-time
system, which should be valid for frequencies that are 31gn1ﬁcant1y
lower than the sampling frequency.

Suppose that the output measurements of the above system are sub-
ject to measurement errors, in that

9(2) = G(2)i(z) + é(2),

where é is the Z-transform of the sequence ej which is normalized
white noise (so that E(e;) =0 and E (e%) = 1). Given measurements
Y1, Y2, - - - Y200, how can you compute an unbiased prediction of yog1?
How large is the variance of the prediction error?



6.

Assume that we have to identify the input/output behaviour of a stable
discrete-time LTI plant which is part of a larger system. We do not have
the possibility to apply input signals of our choice to the plant, we can only
observe the existing input and output signals. These appear to be stationary
random signals.

(a) Describe a method for estimating the terms gg, g1, . .. in the impulse
response of the plant, based on estimating certain auto-correlation
and cross-correlation functions first.

(b)  What is the meaning of a random signal being “persistent of order
N”? What is the significance of this concept in the context of part
(a) above?

(c) After having estimated the first N terms of the impulse response,
90, 91, ---gN—1, how can we build a FIR filter whose transfer function
is a good approximation to the true transfer function? Write the
corresponding difference equation.

(d) Suppose that a discrete-time stationary random signal uy has power
spectral density S%% such that S*¥({) > e for all { on the unit circle,
where £ > 0. Explain why this implies that u is persistent of order N
for any N = 1,2,3,...

Hint for (d): consider the infinite Toeplitz matrix T' with entries T3 = ;ﬁ‘k.
We regard this matrix as acting on square summable sequences zg (with
k > 0), which are regarded as infinite column vectors. The scalar product of
two such sequences is defined by (z,y) = 3z V% and the norm is defined
by ||z||? = (z,z). We have (using the Parseval equality)

1

(Tz,z) = (C™ % 3,7) = %/‘Ciﬂsw(g)pe(g)]?dg > eljz|?.

Thus, we see that the infinite Toeplitz matrix is strictly positive, in fact,
T > eI. This inequality can be used as the starting point for the explanation
requested in part (d).

[ END ]
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