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Information for candidates
Some formulae relevant to the questions

The normal N(m,c?) density: p(y) = \/%E—Zexp (—(y;$)2>

System equations:

Tpa1 = Azg+ Bug+ Mug
Y — C$}c+N’U}k

Here, vy and wy, are standard white-noise sequences.

The Kalman one-step-ahead predictor:

Tppape = A1+ K(k) (yk - Cﬁk|k—1)

K(k) = AP arC" (CPysC” + NNT) ™

Pesije = APyt AT + MMT — APy 1O (CPapesC7 + NNT) ™ O Py s AT

The average quadratic cost identity:

N-1 .

k=0

N-1
=F [ngoxk =+ Z (Uk + Fkxk)T(BTSkHB + R) (uk + Fkxk)J

N-1 =
> i (S MMT)
k=0

where for £k =0,..., N — 1,

F, = (B'SpuB+R) BTSpnA
4T T T L o7 _
S(k) = ATSpnA+Q— ATSenB (BTSpB+R) BTSenA, Sy =Qn

The algebraic Riccati equations:

S = ATSA+Q— ATSB (BTSB+R) BTSA (control)
P = ATPA+ MMT — APCT (CPCT + NNT)" CPAT  (filtering)



1. Let z(¢) be the state process of the continuous time model
(t) = Az(t) + Mo(t)

where v(t) is a vector white noise process with covariance function £ [v(t)v (S)T}
= 16(t — s).

(a) Show that for A > 0 the sampled state 2, = z(kh), k = 0,1,..., satisfies
an equation of the form B

Tpp1 = Azp + Ty
where 0y is discrete time white noise with covariance matrix ¢ = Elv,vF] .
Determine how A and () are expressed in terms of A, M and h and obtain

a formula for E[z,71].

(b). In the case where h = 200,

A= [ ] -0

and the process z(t) is assumed to be stationary, show that z, = (z1x, T2x)*
is approximate white noise in the sense that the following cross-correlations

are less than 0.2 :
Elzy pz2.x) Elza k1172 k]

1 2 1
2 2 Y2 2 2 \2
(Exl,kE%,k) (E*'EZ,k--i—lEmZ,k)




2. (a) Suppose X and Y are scalar random variables with a joint covariance

matrix
P11 P12
> 0).
[p:u pzz} (P )

Then the linear least squares estimate (LLSE) of X given Y is
X = EX + pipyt (Y — EY).
Prove this.

(b) Suppose X, N1Ns, ..., N, are independent uniformly distributed ran-
dom variables. The density of X is constant at 5- on [0, 2a] and that of

each V; is £ on [0,2]. Suppose

i=X+N, i=1,2,...,n.

It can be shown that the LLSE of X given Yj,...,Y, is the same as that
of X given Y, where ¥ = 1 5°7'Y;. Use this fact to derive the LLSE of X

given Yi,...,Y,.

(¢) Comment on whether you would expect the LLSE in (b) to be close to
the conditional mean of X given Y] in the case when n = 1. Illustrate your
answer with a sketch of the set on which the joint density of X and IV; is
positive.



3. A depth finder measures the depth of water beneath the keel of a ship. It
produces a sequence of measurements of the form

yp =z +wg, k=0,1,2,...

where z; is the depth under the ship at time k£ and wy is standard white
noise (Ewy = 0, Fwgw; = d;). The depth zj is modelled by the equation

Tk4+1 = Tk + 0V

where v;, is a standard white noise process independent of wy. The variance

o? of the depth noise is assume to lie between £ and 4.

Using the formulae at the front of the paper, express the steady-state error
variance p(o?) associated with the Kalman one-step-ahead predictor as a
function of o2 and calculate it in the case where o2 = 4.

(b) An “observer” filter is to be employed with a fixed gain K, where
0< K <2

Erpr = T+ K(yx — T)-
Show that the steady-state variance of the resulting estimation error %, =
T — Iy satisfies the formula

~92 -
Bl = s g

(c) The gain K is to be chosen to make the filter of part (b) insensitive to
the value of ¢. Explain why, if K is chosen to minimize the “worst-case”
error covariance

ma:c{Ei:i L S <ot < 4} ,

1

Z =

the resulting error covariance coincides with the error variance produced by
the Kalman predictor for o2 = 4. '



. Consider the following t‘arget tracking problem. ‘The target motion is rep-

resented by the linear system
itk_|-1 — A.’Ek + .]\4?)]C

At tirhe k the tracker has available observatlons Yo, Y1, - - -5 Yko1 Whefe_yi is
given by

= Cz; +w;.

In these equations, vy and wy, are independent Gaussian white noise pro-

cesses with identity matrix covariances. The initial state o has distribution
N(my, Fo), independent of vy, wy. The dynamics of the tracker - in which
2z is of the same dimension as x;, - are given by '

241 — AZ}C—}—B’U,]C ‘

wheré uy is a scalar control input and A and B are, respectively, a constant
matrix and a constant vector. For each k, the control u; is to be chosen as
a function of vy, ..., yx1 and 2z; to minimize

N-1 ,
(uf +llen — 2vlP)]. ¢

e
—
e

(a) Show that the optimal control law is the same as -that for the problem
of minimizing
N-1 ‘ B
B[S (uf + a1 = 2vlI?)] -

k=0

(b) Suppose the Kalman filter for the one-step predictor & = wktk 1 1s time

invariant with constant conditional covariance Py = cov(Zi|Yk—1,-- -, Y0)-

Using the formulae at the front of the paper, show that the control problem
can be reformulated as a complete information LQG problem in which-

~

Qx = Zk is regarded as as a “hyperstaﬁe” that satisfies a time invariant

stochastic state equation.-

- ,Give the statistics of the noise term in this equatmn and formulate the

criterion that is to be minimized.



5. A stochastically disturbed state process.

4

Tpr1 = Azp + Bugp + Mvg

is controlled by time-invariant state feedback u = u(z)) chosen to minimize
- over the class of stabilizing controls for which Ez; and E[z;z¥] converge
to constants - the average cost rate limy_ooJ%%, where

1 . N1 -

JguN = —_F [Z (xf@xk—i—uffiuk)} .
) N k=0

Here vy, is white noise with Evkvl = Idy and Q and R are posmve deﬁmte

matrices. :

(a) State conditions for there to be a unique positive semidefinite solution
to the “control” form of the associated algebraic Riccati equation (ARE)
~ given at the front of the paper

(b) Assume that the control ARE posseSses a unique positive semidefinite
solution S. Prove that the control law wu that minimizes the finite-time .
cost
: N~-1 _ :
E| Z (fomk + ufRuk) + LENS.’IJN]
k=0 : _ ,

takes the tlme—mvarlan’c form ur = u(zy) and simultaneously minimizes
the average cost rate lsz_%OJ” o

(c) Suppose Ty 18 scalar A=aand B=M=Q=R=1. Determme the
~ optimal control law .-



It

6. In a simple test between two hypotheses: the null hypothesis, “index J = 0”

and the altefnative “J =17, N independent measurements are made.

If J =0, the probablhty density of each yy is po( ); if J =1 the probability
density of each yj is 7 (y). :

If my = P(J = 0) and 7, = P(J = 1) are the prior probabilities of the two
alternatives, then the minimum probability-of-error Bayes test is

Choose J =1 " if mypy w

k= 1200 yk) =
Choose J =10 otherwise, ‘

(a) Show that this Bayes test has the 1nterpretat1on of plckmg the “condi-
tionally most likely” of the two alternatives, glven the measurements.

(b) In a test to detect radiation, the N “inter-click” times 7 between
N + 1 clicks produced by a Gelger counter are 1ndependent and identically
distributed as

(
4

po(y) = 0.1e7%%¥ 4 >0 if there is no radiation
p(y) = ' Se ~0.5y ,y >0 if radiation is present.
The prior probabilit of radiation being present is 0.5.
Y

Derive a Bayes test in this case, and show that it depends only on the
sufficient statlstlc YN = 21 Yk-

N_.—..4 a,nd y1:6? y2:3, y3:5’ -’y4:4,

- what are the conditional “odds” of the presence of radiation against its-
“absence? -

7
END
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