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Multiplying the first and second descriptor equations from the left by E~'and
P

respectively we get the state-space realization with
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Since [A — sl BJ loses rank for s = —3, | =3 is an uncontrollable mode, | and
since [AT — sI (7] loses rank for s = 4, |4 is an unobservable mode.] Since

the uncontrollable mode is stable, | the realization is stabilizable] and since the

unobhservable mode is unstable, Ithe realization is not detectab]e.]

By removing the uncontrollable and unobservable modes we get the minimal
realization
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By performing the following elementary operations: (1) r; < 1y, (2) 7y :=

ry—(s+ )r, (3) e2i= o — (s + 1)er. (4) 3 = —co, the McMillan form of G(s)

1s given by,

7\ S) = ; L

‘ L0 0 s+3]10
The pole and zero polynomials are given by

=: L(s)M(s)R(s),

s+ 1
—1

where [L(s) and R(s) are unimodular.

pis)=s—1, & |z(s)=s+3

respectively. 'Ehe McMillan degree is 1‘ since it 1s equal to the degree of the
pole polynomial.

Since s = —3 is an uncontrollable mode, | —3 is an input decoupling zero.’

It fol-

Since s = 4 is an unobservable mode, ’4 1s an output decoupling zero.

lows from Part (d) that the system has a ‘ transmission zero at s = —3.|




2. (a) Inject a signal d in between (i(s) and K'(s) and call the input to G(s) u. The
loop is internally stable if and only if the transfer matrix from [ - ] to [ z ]
is stable (no poles in the closed right half plane). Since
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the loop is internally stable if and only if 771(s) is stable.

(b) Since G/(s) is stable, we proceed as follows. Note that

I K . I 0 1 — N _
-G 1 T -G 0 [ —GK
Hence
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Finally, since (1 — GN)™ = I + GK(I — GK)™', it follows that if G is sta-
ble, then the loop is internally stable if and only if Q = K(I — GK)™! is

stable. Rearranging terms shows that K is internally stabilizing if and only if

KN =Q(I 4+ GQ)™" for some stable ().

(c) 1. Setting & = G, the transfer matrix between (r +y) and u in Figure 2.2 is
given by ([ 4+ PG)~'P. Comparing this with Figure 2.1 and the answer to
Part (b), it follows that we can identify K with (I + PG)™'P and P with
(). Tt follows that Lthe loop is internally stable if and only if P is stable.w

ii. Set ¢ = (I + A)G, as shown in the figure below.

Al
"G(;Q_‘

Since K" is internally stabilizing, | K = P(I + G'P)~! for some stable P
from Part (h). We search for a stable P to satisfy the design require-
ments. Let the input to A be ¢ while the output from A be §. Then
a simple calculation shows that ¢ = C¢ where C = (I — GR)'GK is
the complementary seusitivity which is stable. Now S = (I — GK)™! =
I+ GPand € = GR(I — GK)™' = GGP. The small gain theorem implies
that for K to stabilize the loop in Figure 2.2 for all A, we must have

G Gw) P(jw)l| < iz, so we choose
L=

P(s) = higge G7Hs) | = h[ AT ]
s+1

where —1 < A < 1 is to be determined. Since S(0) = [ + G(0)P(0) =
(1 4+ h)1y, it follows that any |[—1 < h < —0.9| will satisfy the design spec-
ifications.




3.

(a) By direct expansion, |using K = PCT |,

Lis)L(=s) = 14+C(sI=A)'PCT 4 CP(=sI—=AT) T

+ C(sl— A PCTCP(—sT—AT) 1T,

Using the Riccati equation }.,

PCTCP = AP+PAT+ BB = —(sI—A)P—P(—sI— AT) + BBT.

Multiplying by C'(s/—A)~! from the left and (—s/—AT)"'C7 from the right |,

C(s[=A)'PCTHCOP(—sT-ATYICT 4 C(sI=A) ' PCTCP(—sI—AT)1CT

= C(sl=A)'BBT(—sI-AT)7'CT,

and the result follows.

(b) Part (a) implies that o[l + G(jw)K] > 1, Vw € R. It follows that

(I +GR)™, <L

Now, (/ + GK)'GK = L(L™" — I) = I — L™, Thus, Part (a) implies that

1

FlLjw)™ =< 146[Lw) <1+ ———— < 2,
| | L) olL(jw)]
so that
(I 4+ GR)'GKY),, < 2.
(c) (i) Set Ay =0. Let ¢ be the input to A, and & be the output of A;. Then

c=—(0+GKe)=~(I+GK)™'s

Using the small gain theorem (since the regulator is stable and the per-
turbation is assumed stable), the loop is stable if |A{(I + GK)7!| < 1.
But Part (b) implies that |[(7/ + GA)7Y| < 1. This shows that the loop
will tolerate perturbations of size

Ayl <1

without losing internal stability.

Set Ay = 0. Let € be the input to Ay and § be the output of A,. Then
e=—-GRK(6+e)=—(1+GK)'GKS.

Using the small gain theorem (since the regulator is stable and the pertur-
bation is assumed stable). the loop is stable if ||Ay(I + GK)'GK|| < 1.
But Part (b) implies that ||(/ + GN)"'GK||_ < 2. This shows that the

loop will tolerate perturbations A, of size

|A]]. < 0.5

without losing internal stability.



4. (a) Suppose that both [A(s) and S(s) are stable|. Then the feedback loop with

forward transfer matrix A(s) and feedback transfer matrix S(s) is stable if

[A(5)S(s)ll, < 1.

(b) (i) The realization is balanced if

[AY + XA+ BB' = A'S + YA+ C'C = 0]

for | ¥ = diag(oy,02,03) > 0] and where the ols are the Hankel singular

values of K'(s). A simple calculation gives

Y= dlag(O}, 02, 1) e [0'1, 09, 0'3] = [1, .3, 2]

(i1) Let Gi(s) denote a first order balanced truncation of G(s). Then Gy(s) =
G/(s) + A(s) where

, R 5 &
Gl = | |- I8l <25 e =1

Then replacing G/(s) by G/1(s) in the loop of Figure 4 is equivalent to:

€ )

_— | N (s) o Gi(s) _>O-———>

Now
c=—N(I+GK)'S

and so the loop is stable if |K(/ + Gy K)7"]| _||A]l.. < 1. from the small

gain theorem. Since |[A|| < 1]it is sufficient that [|K (I + Gy K)7Y|, < 1}

However. since (¢; (s) is stable, the set of all internally stabilizing controllers
for (71(s) is given by:

K =Q( —GQ)"

for stable (). Furthermore,

KN(I+G )" = Q.

Thus we can take | Q) = ¢l | where (to guarantee a first order

controller) and ||¢| < 1| (to guarantee stabilization of (7).




(a) It is clear that we require K" to be internally stabilizing.
e A simple calculation shows that, when n(s) =0, e(s) = =S(s)r(s) where
S(s)=[I+G(s)K(s)]7" is the sensitivity. Thus |[e(jw)|| <|[SGw)||Ir(Gw)]].
It follows that a sufficient condition to achieve the first design specification
is || S(Jw)|l < fwit(jw)], Yw or equivalently | [[W;S|| < 1|, where Wi =w;!.

e A similar calculation shows that, when n(s) = 0, u(s) = —K(s)S(s)r(s).
Thus [Ju(jw)|| < [|K(Gw)S(Gw)||||r(gw)]||. 1t follows that a sufficient condi-
tion to achieve the second design specification is || K (jw)S(jw)|| < |wy ' (jw)],

W, KSHOO < 1}, where Wy = wy1.

Yw or equivalently

e When r(s) = 0, a similar calculation shows that y(s) = —C(s)n(s) where
C'(s) = G(s)N(s)[T+ G(s)N (s)]7! is the complementary sensitivity. Thus
Nyl < 1ICGw)ilin(gw)]]. 1t follows that a sufficient condition to
achieve the second design specification is ||C'(jw)|| < |w3(jw)|, Yw or equiv-
alently | ||W5C| . < 1|, where W3 = wsl. e

To satisfy all design requirements, it is sufficient that WoK S <1}
WsC

(b) The design specifications reduce to the requirement that the transfer matrix

from r to v = [z] zI' 2T]Tin the following diagram has H..-norm less than 1.

jos} T o] ? 23

W | W, | | W |
A 4 4

a?_’ c | JwpdJa] -

The corresponding generalized regulator formulation is to find an internally
stabilizing K such that [|F(P, K)| . < 1:

2 ] 7

P(s)

e <

K(s)

4

T
i

(¢) Let the input to A be ¢ and the output from A be 6. Then ¢ = —KS¢
and since K'S is stable, the small gain theorem implies closed-loop stability
if |A(Jw) K (jw)S(Jw)|| < 1,Vw. Since K achieves the design specifications of
Part (a), [[[A(jw)|| < |wa(jw)

, Vw/is the maximal stability radius.




6. (a) The generalized regulator formulation is given by

Al BB
z(s) w(s . Pii(s) Pia(s) |s| C| 010
= P = s = =
[ y(s) (s) wls) s uls)=Iy(s), P(s) Por(s)  Paals) ollolr
I'f1010
(b) The requirement [[H|| < v is equivalent to .J := [ 2]|2 = ~2|lw]l; < 0, with

|v]|2:= / | lw(t)||%dt. Let V =2 Xz and set u= F'z. Provided that X = X7 >0
o Jo

and V' <0 along closed loop trajectory, we can assume tli}m 2(t)=0. Then

V=i Xota " Xi=aT (ATX+ XA+ FTBTX + X BF) 2 +2" X Butw" B X,

Integrating from 0 to oo and using 2(0) = x(o0) = 0,

0= /\ ! (ATX 4 XA+ FTBT X 4 X BF) o +27X Butw” BT Xaldt.

JO
Using the definition of J and adding the last equation, J =

/{.sz[AT\'Jr NXA+CTO+ FTP 4 FTBIN+ XBFa— [y w!w -2 "XBw—w! B Xz] }dt.
0
Completing the squares by using
(F+B™X)(F+B"X)= FTF+ FTB'X+ X BF+ XBB"X
|(yw—~"' BT Xa)||* = ‘/QwTw——/LUTBTX.T——SCTXBw—l—’y'szXBleYI,

J :/\1{"'71!1'1:“’4-4\"4+CTC"—(1—7‘2)4X’BB71X]:K+H(F—FBTX):EHZ— va—v'lBTch
0

f}dt.

Thus two sufficient conditions for J <0 are the existence of X such that

ATX 4 XA+CTC—(1—42) X BBTX =0, X=XT>0.

The state feedback gain is F'=—BTX and the worst case disturbance is w”=
v 72 BT X x. The closed-loop with these feedback laws is & = [A—( 1+ BBTX]x
and a third condition is therefore | Re \;[A—(1—y"2)BBTX]<0, V i.

[t remains to prove V < 0 along state-trajectory with u=Fz and w=0. But

V=al (ATX +NA+FTBTX +XBF) v=—al(CTC+(1 + vy HXBBTX)x<0

for all 0 (since (A, B, () is assumed minimal) proving closed-loop stability.

(¢) The optimal ~ is the smallest value of 4 > 0 such that the sufficient conditions
binary search algorithmJ as follows:

are satisfied. This can be calculated by a

i. Choose upper and lower bound ~, and
ii. Define v = 0.5(v, + ¥1)
iii. If there exists a positive stabilizing solution to the Riccati equation set
Vo = 7 else set v = 7.

iv. Go to ii.



