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(a) Let
oy, A 1 s=2
G(é)_s-l-l[s—ii 12 }
(i) Find the McMillan form of G(s). 2]
(ii) Determine the pole and zero polynomials of G(s). 2]

(iii) Find the poles and zeros of G(s), specifying the multiplicity of each. [2]

(b) Consider a state—variable model described by the dynamics
(t) = Az(t) + Bu(t)
y(t) = Cz(t),
and denote the corresponding transfer matrix by H(s). Suppose that there
exists P = P’ > 0 such that

AP+ PA PB ('
B'P -1 0 | <0
C 0 -I
(i) Prove that A is stable. 3]

(ii) Prove that

BIP -1

AP+ PA+C'C PB
< 0. [3]

(iii) By defining the Lyapunov function
V&)= () Px(t);
the cost function
Ji= [ty - u@yu(old,
and using a property of the integral [V (t)dt, or otherwise, prove that
1H]l, < 1.

State clearly the assumptions required on u(t), z(0) and z(oc0). [8]
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2. Consider the feedback loop shown in Figure 2 below. Here G(s) is a given system
model and K(s) is a compensator.

(2)

(b)

Define internal stability for the nominal loop, and derive necessary and suffi-
cient conditions for which this feedback loop is internally stable.
[6]

Suppose that the transfer matrix G(s) in the nominal loop in Figure 2 is
stable. Derive a parameterization of all internally stabilizing controllers for
the feedback loop.

[6]

Suppose that

s—1

&

Go(s)

where G,(s) is a stable and minimum phase transfer matrix (that is, G,(s)*
is stable). Let S(s) denote the transfer matrix from 7 to e in Figure 2. By
using the answer to Part (b) above and the small gain theorem, or otherwise,
find

[15]lo-

ﬂ‘(—

= IT11T1
K is internally stabilizing

8]

Figure 2
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3. Consider the regulator shown in Figure 3 for which it is assumed that the triple
(A, B,C) is minimal and z(0)=1zy. Take H initially to be equal to I.

Zo |
r=0 i 5
H i = B / " F >
A =
Figure 3
Let z = zl . A stabilizing state-feedback gain matrix F is to be designed such
2

that the cost function J := [§° z(¢)T2(¢)dt is minimized.

Let V(t) = z(t)T Px(t) where P = PT is the unique positive definite solution of the
algebraic Riccati equation

A'P+ PA+1-PBBTP =0

(a) Assuming the closed loop is asymptotically stable, obtain an expression for
JoT V(t)dt in terms of zo.
(5]

(b) Evaluate an expression for J using an appropriate completion of a square.
Using this expression, find F' that minimizes .J. Give also the minimum value
of J.
[5]

(c) Let G(s) = (sI — A)™'B and define L(s) = I — FG(s). Using the algebraic
Riccati equation show that
L(jw)L(jw) = I + G(jw)'G(jw)
(5]

(d) Suppose that there is an uncertainty in modelling B so that the actual value
of B is B(I + A), where A represents a perturbation. This perturbation is
represented in Figure 3 by taking H = I + A. Find the maximum value for
|All for which the closed loop in Figure 3 is stable. [5]
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4. Consider the feedback loop shown in Figure 4 where G(s) represents a plant model
and K (s) represents an internally stabilizing compensator. Suppose that

1 —1‘1 1

s[A|B] | -1 -125/06 08
G(g)‘{ |D}_ T 06 [0 0 |< e
1 0.8 0 0
T €
—  K(s) = G(s) >
Figure 4

(a) Show that the given realization for G(s) is balanced and evaluate the Hankel
singular values of G(s). [6]

(b) By using:
e the answer to Part (a),
e the small gain theorem (which should be stated),
e and a parameterization of the set of all internally stabilizing controllers,

derive a technique to design a first order internally stabilizing controller K(s)
for G(s). (8]

(c) Design a non-dynamic internally stabilising controller K for G(s) such that
1K > 1. (6]

(Hint: Use the procedure outlined in Part (b) and the fact that

Gl (S)Q =0

where G;(s) is a first order balanced truncation of G(s), Q = % [ _11 _11 }

and [|Q] = 1.)
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5. Consider the feedback configuration in Figure 5.1. Here, G(s) is a nominal plant
model and K (s) is a compensator. The signals 7(s) and n(s) represent the refer-
ence and sensor noise, respectively. The design specifications are to synthesize a
compensator K(s) such that the feedback loop is internally stable and:

e For good tracking, it is required that, when n(s) =0,
le(Gw)l < fwr(jw) HlIr(w)ll, Yeo.

e To limit the control effort, it is required that when n(s) =0,
lu(iw)ll < fwa(Gw) | lIr(jw)], Ye.

e For good sensor noise attenuation it is required that, when r(s) = 0,
ly(Gw)ll < [ws(jw) lIn(iw), Yo,

where wq(s), wa(s) and ws(s) are suitable filters.

r(s) e(s) o) u(s) 1) zi(-;)

A

7 ¥

\T/‘n(s)

(a) Derive Hy-norm bounds, in terms of G(s), K(s), w1(s), wa(s) and ws(s) that
are sufficient to achieve the design specifications. [6]

Figure 5.1

(b) Derive a generalized regulator formulation of the design problem that captures
the sufficient conditions in Part (a). [7]
(¢) Assume that K(s) achieves the design specifications in Part (a). Suppose that
uncertainties A, (s) and As(s) are introduced as in Figure 5.2 where A,(s) and
As(s) are stable transfer matrices.
i. Assume that As(s) = 0. Derive an upper bound on ||A;(jw)|, Vw, for
which robust stability is guaranteed.

ii. Assume that A;(s) = 0. Derive an upper bound on ||As(jw)|[, Vw, for
which robust stability is guaranteed. [7]

Ag (9)

Ol K6 ] e

Figure 5.2
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6.

(a) Consider the regulator shown in Figure 6.1 for which it is assumed that the
triple (A4, B, C) is minimal and z(0)=0.
2 w

Figure 6.1

and let H(s) denote the transfer matrix from w to z. A stabilizing

22
state-feedback gain matrix F'is to be designed such that, for v>0, || H]| <7

Let zz{ 1

i. Write down the generalized regulator system for this design problem. [4]

ii. By using the Lyapunov function V (t) = z(¢)T Xz(¢), where X is to be de-
termined, derive sufficient conditions for the solution of the design problem.
Your conditions should be in the form of the existence of a certain solution
to an algebraic Riccati equation. It should also include an expression for
F and an expression for the worst-case disturbance w. (8]

(b) Consider the output injection problem shown in Figure 6.2 for which it is
assumed that the triple (A, B, C) is minimal and z(0)=0.

i?ﬂ]

B 5 W2
1 Ly ’\/ir £l AN T Y
A
_ Figure 6.2
Let w = fwl ] and let H(s) denote the transfer matrix from w to z. A

stabilizing ct)%tput injection gain matrix L is to be designed such that, for
7>0, [H|l <7
i. Write down the generalized regulator system for this design problem. [4]
ii. Use a duality argument to transform the output injection problem into the
state-feedback problem of Part (a). (4]
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(a) (i) By performing the following elementary operations: (A) ry & ro—(s—3)r,
(B) c2 = ¢a— (s —2) 1, (C) ¢ « —co, the McMillan form of G(s) is

1 ;
1 0 0 1 s-2
) = s+1 = L(: VR(:
G(s) [3—3 l}{qo 856][0 1 } L(s)M(s)R(s)
where L(s) and R(s) are unimodular.
(ii) The pole and zero polynomials are p(s) = s + 1, z(s) = s — 6.
(iii) It follows that the system has a simple pole at —1 and a simple zcros at 6.
(b) (i) The (1,1) block of the inequality gives the inequality A’P + PA < 0. Let
z # 0 be aright eigenvector of A and let A be the corresponding eigenvalue.
Then multiplying the inequality from the left by 2’ and from the right by z
gives (A + A)z'Pz < 0. Since P > 0 it follows that 2’Pz > 0 and it follows
that A + A < 0 so that A is stable.

(i) Call the matrix in Part (b) g ;z

matrix in (ii) S. Pre- and post-multiply the first matrix by 7" and T where

T = I 0 ives §
— | =t 2| % 0 X

(iii) Since A is stable, |H|, < 1 if and only if, with z(0) = 0,

} where X9 = —1 and call the

} which proves the result.

J = /0 [y'y—u'u]dt <0,
for all u(t) such that ||ull2<oco. If ||jul|2 is bounded, then tl_h&m(é) ={0.

Now,

[ S e’ Paldt=a(oc) Pa(oc) ~a(0) Px(0) =0.

So,
b= /oogfp“wfp"@dﬂ=/OTEA3J+BU)’P&’?-!-:K’P(AJ:-%Bu)}dt

= f (2 (4 P+PA)e+a' PBu+u/ B Peldt
0

Use y=Cxz and add the last expression to .J

J = /Uocfx'(A’P+PA+C’C)$+x’PBu+u’B'P:B—u’u]dt

& , 1| AAP+PA+C'C PB
=/0 [33" u}{ +B’P+ —I}{i}dﬁ

<0

from the inequality in Part (ii). This proves the result.
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(a) Inject a signal d in between G(s) and K (s) and call the input to G(s), u and
the input to K(s), e. The loop is internally stable if and only if the transfer ma-

trix from { i } to [ 2 ] is stable (no poles in the closed right half plane). Since

=l T e el

the loop is internally stable if and only if T-1(s) is stable.

(b) Since G(s) is stable, we proceed as follows. Note that

A -

Hence

26 T ] [ 8] =[0 Wi e 8]

Finally, since (I — GK)™! = I + GK(I — GK)™, it follows that if G is sta-
ble, then the loop is internally stable if and only if @ := K(I — GK) ! is
stable. Rearranging terms shows that K is internally stabilizing if and only if
K = QI + GQ)™ for some stable Q.

(¢) Now, e(s) = S(s)r(s) where S(s) = (I — G(s)K(s))~'. Substituting the ex-
pression for stabilizing K from Part (b), and the expression for G(s),

[I—GBE)K(G$)] ™ =I+G(s)Q(s) =1+ : —

Since G,(s)™! is stable, we can set Q(s) = G,(s)~2Q(s) for some stable Q(s).
It follows that

I-G(s)K(s)] L =142

|I + ﬂ@(s)”mJ > 1 for any Q(s) since Q(s) is stable. It follows that

However, i

g=1L



3. (a) Let V =2TPz and set u= Fz. Provided that P= P >0 and V < 0 along
closed-loop trajectories, we can assume tIim z(t)=0. Then
0
V=i"Pr+a" Pi=a" (A"P+PA+F" B P+PBF)x.
Integrating from 0 to oo and using z(oo) = 0,

fo (ET (ATP_I_PA__}_};’I'BTP_!_PBF) xdt = —:Eg‘f)fﬁo‘

(b) Using the definition of J and adding the last equation,
J =aT Pro+ / AP+ PA+1+ FTF+ FTBTP+ PBF|cdt.
0

Completing the squares by using
(F+B'P)(F+B"P)= FTF+ FTB'P+ PBF + PBB'P,

.f:a:gpm0+7{x71A1P+PA+f — PBB"Pla+| (F+BTP)3:“2}d-L.
0

Since the last term is always nonnegative, it follows that the minimizing value
of F' is given by F = —BTP. Since the term in square brackets is zero from
the Riccati equation, it follows that the minimum value of J is af Pay.

(¢) By direct evaluation, L(jw) L(jw) =
I - F(jwl — A)7'B - B'(~jwl — A)7'F + B'(—jwl — A)'F'F(jul — A)~'B
But F'F' = A'P+PA+1 = —(—jwl — A")P — P(jwl — A) +1I from the Riccati
equation. So, L(jw)'L(jw)
= I-F(wl — A)'B— B(—jwl - A) 1F
+B(—jwl — A) 7 —(—jwl — A)P — P(jwl — A) + I|(jwl — A)"'B
= I—[F+ B'Pl(jwl — A)'B - B'(—jwl — A)"\[F + PB]
+B(=jwl — A) " (jwl — A) 'B
= I+ G(w)G(jw)
(d) Let € be the input to A and § be the output of A. Then
e=FG@0+e¢)=(I-FG)'"FG6=L(I-L)§=(L*-1)é

Using the small gain theorem (since the regulator is stable and the perturbation
is assumed nondynamic), the loop is stable if ||A(L™! — I)||_ < 1. But part
(¢) implies that

[

G[L(jw) ' — I <14 6[L(jw) Y] <1+ <2

o[L(jw)]
This shows that the loop will tolerate perturbations A of size [|A[| < 0.5 with-
out losing internal stability.



4.

(a)

The realization of G(s) is balanced if
AL+ XA +BB' = AT +3TA+C'C=0
for ¥ = diag(oy, 02) > 0 and where the o}s are the Hankel singular values of

G(s). A simple calculation gives ¥ = diag(1, 0.4).

Let Gy(s) denote a first-order balanced truncation of G(s). Then G;(s) =
G(s) + A(s) where

2
1A, <23 0; =08,

=2

Then replacing G(s) by G1(s) in the loop of Figure 4 is equivalent to:

€ : )

Now
e=—K(I+GK)™

and so the loop is stable if |K(I + G 1K) |, < 1.25 from the small gain
theorem and since Al < 0.8. However, the set of all internally stabilizing
controllers for G;(s) is given by:

K=Q(I-GQ)™
for stable Q). Furthermore,
K(I+GK)'=qQ.
Thus we can take () = ¢, where ¢ is constant (to guarantee a first order con-

troller) and |¢| < 1.25 (to guarantee stabilization of G).

Noting that the dynamic part for the expression for K(s) in Part (b) comes
from the product G, (s)Q, we take the hint from the question and set Q = ¢Q
so that K = ¢Q. To satisfy ||K| > 1, we need |¢| > 1. Combining this with
Part (b), which requires |¢| < 1.25, we may take q = 1.



)

(a) It is clear that we require K to be internally stabilizing.

e A simple calculation shows that, when n(s) =0, e(s) = =S(s)r(s) where
S(s)=[I+G(s)K(s)] ! is the sensitivity. Thus |[e(jw)|| <[|SGw)||||r(Gw)].
It follows that a sufficient condition to achieve the first design specification
is || S(jw)]| < Jwit (jw)|, Yw or equivalently ||[W1 S|, <1, where Wi =w;1.

o A similar calculation shows that, when n(s) = 0, u(s) = —K(s)S(s)r(s).
Thus [|u(jw)| < |K(Gw)S(Gw)|||r(jw)|- It follows that a sufficient condi-
tion to achieve the second design specification is | K (jw)S(jw)|| < w3 ' (jw)],
Vw or equivalently WK S| < 1, where Wa = wsl.

e When r(s) = 0, a similar calculation shows that y(s) = —C(s)n(s) where
C(s) = G(s)K(s)[I +G(s)K(s)] ' is the complementary sensitivity. Thus
ly(Gw)|| < [[CGw)|lIn(jw)|. It follows that a sufficient condition to
achieve the second design specification is || C(jw)|| < |ws ! (jw)|, Yw or equiv-

alently ||WsC||, < 1, where W3 = wsl. WS
To satisfy all design requirements, it is sufficient that ||| W5 K.S <1.
W;C

(b) The design specifications reduce to the requirement that the transfer matrix
T 2T 211" in the following diagram has H.-norm less than 1.

from r to z = [2] 22
% Z1 t 22 I 23
W1 W, W3

4

%f‘*———IKILLIG! o

The corresponding generalized regulator formulation is to find an internally
stabilizing K such that ||F(P, K|, < 1:

2 g—] e T
. P(s) |. fi
g A
~K(s)
Py P
P = —
[ P21 P?Q :|

(¢) (i) Set Ay = 0. Let € be the input and § be the output of A;. Then € = S6.
Using the small gain theorem the maximum stability radius is |w;(jw)|.

(ii) Set Ay = 0. Let € be the input and d be the output of As. Then ¢ = GK S4.
Using the small gain theorem the maximum stability radius is |ws(jw)|.



6. (a) i. The generalized regulator formulation is given by

A|B|B
2(s) |_ pyoy| w(s) L S Pi(s) Pi(s) |s| CTOTO
[y(s) ‘|—P(=‘>)[ u(s) J, TL(SJ—FQ(S),P(~)—[ Poi(s) Pa(s) J—' ollolr
I10]0

ii. The requirement ||H|_ <+ is equivalent to J:= ||z|]§—'yz||w||§ <0. Let
V=2"Xz and set u=Fz. Provided that X=X7 >0 and V <0 along the
closed-loop trajectory, we can assume tlim z(t)=0. Then

OO

V=i"Xe+a"Xi=2" (ATX+XA+F'BTX +XBF) z+2" X Bu+w’ BT Xa.
Integrating from 0 to oo and using z(0) = z(oc) = 0,
0= | " (A"X+XA+FTB" X+ X BF) z+a" X Bu+w" B" Xaldt.

J1
Using the definition of J and adding the last equation, J =

/{ﬂA’f'XJr XA+C"C+F"F+F'B"X+ XBFlz— [y*ww—2"XBw—w"B Xz }dt.
0

Let Z = F + B"X. Completing the squares by using
Z'Z=F"F+F'B"™X+XBF+XBB'X
(yvw—vy"'BTX2)|? = YwTw—w'B"Xz—2"X Bw+~ 227X BBXz,

N

J= /{x’TATX+XA+CTC—(1—7"2)XBBTX];$+||Z:c|]2—nyw—'y 1BTXx”2}dt.
0

Thus two sufficient conditions for J <0 are the existence of X such that
ATX + XA+CTC-(1-v3)XBBTX=0, X=X">0.

The feedback gain is F'=—BTX and the worst case disturbance is w* =
v ?BTXz. The closed-loop is & = [A—(1—+ 2)BBTX]z and a third
condition is therefore Re A;[A—(1—772)BBTX]<0, V i.
It remains to prove V < 0 along state-trajectory with u= Fz and w=0.
But
V=2 (ATX +XA+FTB"X+XBF) z=-2"(CTC+(1+ v ?)XBB"X)z <0
for all z # 0 (since (A, B,(C) is assumed minimal) proving closed-loop
stability.

(b) i The generalized regulator formulation is given by

A|B 0|1
2(8) | sl w(s) A ; A | Puls) Pui(s) |s|=
[y(s)}_f’(a)[u(s) ,u(a)—Ly(a),P(b)—[Pm(s) pm(é,.)]- g — g}

ii. Taking the transpose of P(s) in Part (a), redefining A := A", B :=
CT, C:= B, F := L and exchanging w and z we get the state-feedback
problem in Part (a).



