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1.

(a) Let the transfer matrix G(s) have a state space realization,

1 0 1]1 3
3 -2 2|2 4
Gs)=|0 0 4[0 0
1 0 2]0 1
4 0 3|1 0]

Find the uncontrollable and/or unobservable modes and determine whether
the realization is detectable and stabilizable. (6]

(b) Consider a state-variable model described by the dynamics

&(t) = Az(t) + Bu(t)
y(t) = Cz(t),

and denote the corresponding transfer matrix by H(s). Suppose that there
exists P = P' > 0 such that

AP+ PA+C'C PB
BPp I < 0.

(1) Prove that A is stable. (6]

(11) By defining the Lyapunov function
V(t) = 2(t) Px(t),
the cost function
T = [Tee) - ut'u)at
and using a property of the integral [;° V(t)dt, or otherwise, prove that
IH| <1

State clearly the assumptions required on u(t), £(0) and z(c0). 8]
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2. Consider the nominal and actual loops shown in Figure 2 below. Here
L(s) = G(s)K(s)
is the loop gain, where G(s) is a given system model and K (s) is a compensator. The

transfer matrix A(s) represents a perturbation and it is assumed that A(s) is stable.

(a) Define internal stability for the nominal loop, and derive necessary and suffi-
cient conditions for which this feedback loop is internally stable.
[6]

(b) Suppose that the transfer matrix G(s) in the nominal loop in Figure 2 is
stable. Derive a parameterization of all internally stabilizing controllers for
the feedback loop.

[6]

(c) Suppose that

where G,(s) is a stable and minimum-phase transfer matrix (that is, G,(s)™!
is stable). By using the answer to Part (b) above and the small gain theorem,
or otherwise, find the maximum H., norm of A for which there always exists
a stabilizing controller for the actual loop in Figure 2.

(8]

T Yo r Y

4?— L(S) > 4(?— L(S) &

Nominal Loop Actual Loop

Figure 2
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3. Consider the regulator shown in Figure 3 for which it is assumed that the triple
(A4, B, C) is minimal and z(0)=uy.

29

r=0 ’ : z T 21

F 77— -8 J » C P+

Figure 3

Let z = [ 21 } A stabilizing state-feedback gain matrix F' is to be designed such
2

that the cost function J := [5° z(¢)T 2(t)dt is minimized.

Let V() = z(t)T Pz(t) where P = PT is the unique positive definite solution of the
algebraic Riccati equation
ATP+PA+C"C-PBB"P=0
(a) Assuming the closed loop is asymptotically stable, obtain an expression for
[5° V(t)dt in terms of z,. .
5

(b) Evaluate an expression for J using
(i) u(t) = Fz(2),
(ii) Part (a),
(iii) the algebraic Riccati equation,
(iv) an appropriate completion of a square.

Using this expression, find F' that minimizes J. Give also the minimum value

of J. [5]

(c) Prove that the closed loop is stable by showing that V(¢) < 0 along closed-loop
trajectories. [5]

(d) Suppose that A =B = C =2y = 1. Find P, F and the minimum value of J.
Verify that the closed loop is stable. [5]
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4. Consider the feedback loop shown in Figure 4 where G(s) represents a plant model
and K (s) represents an internally stabilizing compensator. Suppose that

== —1‘1 1

s|[A[B]_| -1 -125/06 0.8
G(S)‘[ |Dl_ T 06 [0 0 | €
1 08 [0 0
T €
K(s) > G(s) >
Figure 4

(a) Show that the given realization for G(s) is balanced and evaluate the Hankel
singular values of G(s).
(6]

(b) By using:

e the answer to Part (a),
e the small gain theorem (which should be stated),
e and a parameterization of the set of all internally stabilizing controllers,

derive a technique to design a first order internally stabilizing controller K (s)
for G(s). |
[8]

(c) Since there are many controllers which satisfy the design specifications in
Part (b), explain how to choose the controller so that the loop DC gain is
acceptable.

[6]
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5. Consider the feedback configuration in Figure 5. Here, G(s) is a nominal plant
model and K (s) is a compensator. The signal w(s) represents a disturbance on the
input of the plant. The design specifications are to synthesize a compensator K (s)
such that the feedback loop is internally stable and:

e For good disturbance rejection, it is required that,

lle(ie)ll < |wi(jw) ™ lw(jw)|| V.
e To limit the control effort, it is required that,

lu(w)ll < fwa(jw) ™| [lw(iw)]l, ¥ w.
e For good regulation it is required that,

ly(Gw)ll < lws(Gw) ™| [lw(Gw)]l, Y w,

where w; (s), wo(s) and ws(s) are suitable filters and where ||-|| denotes the Euclidean
norm.

Vv
~

Vv

|

Figure 5

(a) Derive Hoo-norm bounds, in terms of G(s), K (s), w1(s), wa(s) and ws(s) that
are sufficient to achieve the design specifications.
[6]

(b) Derive a generalized regulator formulation of the design problem that captures
the sufficient conditions in Part (a).
[7]

(c) Assume that K'(s) achieves the design specifications in Part (a). Suppose that
an input multiplicative uncertainty A(s) is introduced so that the actual plant
is G(s) [I + A(s)] where A(s) is a stable transfer matrix. Derive an upper
bound on ||A(jw)||, for all w, for which closed loop stability is guaranteed.

[7]
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6. Consider the regulator shown in Figure 6 for which it is assumed that the triple
(A4, B,C) is minimal and z(0)=0.

2:2 w

Figure 6

Let z = l ? and let H denote the transfer matrix from w to z. A stabilizing
2

state-feedback gain matrix F' is to be designed such that, for given v>0, || H||, < 7.

(a) Write down the generalized regulator system for this design problem.

[8]

(b) By using the Lyapunov function V(t) = z(¢)T Xz(t), where X is to be deter-
mined, derive sufficient conditions for the solution of the design problem. Your
conditions should be in the form of the existence of a certain solution to an
algebraic Riccati equation. It should also include an expression for F' and an
expression for the worst-case disturbance w. [10]

(c) Suppose that A = B = C' = 1. Find the smallest 7y, such that for all y > Vomts
there exists a solution to the design problem in Part (b) above. [5]
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(a) Since [A — sI B] loses rank for s = 4 it is an uncontrollable mode, and since
[AT — sI CT] loses rank for s = —2, it is an unobservable mode. Since the
uncontrollable mode is unstable, the realization is not stabilizable, and since
the unobservable mode is stable, the realization is detectable.

(b) (i)

The (1,1) block of the inequality gives the inequality A’P+PA+C'C < 0.
Let z # 0 be a right eigenvector of A and let A be the corresponding eigen-
value. Then multiplying the inequality from the left by 2z’ and from the
right by z gives (A + A)2'Pz + 2’C'Cz < 0. Since P > 0 it follows that
#'Pz > 0 and since 2/C'Cz > 0 it follows that A+ < 0 so that A is stable.

Since A is stable, ||H||,, < 1 if and only if, with z(0) =0,
J = [ocfy’y—u’u]dt<0,
0

for all u(t) such that ||ul|s<oo. If ||u||2 is bounded, then tlim z(t) =0.

=300

Now,

[o'] d , B ’ ! )
]0 a[a: Pz]dt=2x(c0) Px(c0)—2z(0)' Pz(0)=0.

So,
0= # Po+a' Pidt= / [(Az+ Bu)' Pz+1'P(Az+ Bu))dt
0 0

o0
= /ﬂ [/ (A'P+PA)z+1' PBu+v'B'Pz)dt

Use y=C2z and add the last expression to J
J = [[1#/(AP+PA+C'C)a+s'PBu-+u'B'Pr—u'uldt
0

o , 1] AP+PA+C'C PB
=/D[m ”][ +B’P+ —I]li]dt
<0

from the inequality in the question. This proves the result.



2

(a)

Inject a signal d in between G(s) and K(s) and call the input to G(s), u and
the input to K (s), e. The loop is internally stable if and only if the transfer ma-

trix from [ f} ] to { 2 ] is stable (no poles in the closed right half plane). Since

l=1 T LE) el

the loop is internally stable if and only if 771(s) is stable.

Since G(s) is stable, we proceed as follows. Note that

e 7= e o rZex)

Hence

2 RS el ST s 4 )

Finally, since (I — GK)™' = I + GK(I — GK)™, it follows that if G is sta-
ble, then the loop is internally stable if and only if Q := K(I — GK)™! is
stable. Rearranging terms shows that K is internally stabilizing if and only if
K = Q(I + GQ)! for some stable Q.

Let € be the input to A and J be the output of A. Then e = —(I — GK)™ 4.
Substituting the expression for stabilizing K from Part (b), and the expression
for G(s),

1= GEEEI™ =T+G(5)Q(s) =T+ —=Gol5)Q()
Since G,(s)~! is stable, we can set Q(s) = G,(s)'Q(s) for some stable Q(s).
It follows that

1= GEKE)™ =+ Q)

The small gain theorem implies that to guarantee internal stability we require

|]AH00“I+ yra, (s)”oo < 1. However, ”I+ ﬁ@(s)”w > 1 for any Q(s). It

follows we can guarantee internal stability only if [|A[|, < 1.



3. (a) Let V=2TPz and set u= Fz. Provided that P =PT >0 and V <0 along
closed-loop trajectories, we can assume tlg& z(t)=0. Then

V=4"Pg+a"Pi=4" (A"P+PA+F"B"P+PBF)z.
Integrating from 0 to oo and using z(oco) = 0,

m sl
/ o* (A"P+PA+F"B"P+PBF)adt = —a} Pay.
0

(b) Using the definition of J and adding the last equation,
J =28 Pro+ / T ATP+ PA+CTC + FTF + FTBTPy PBF|zdt.
0

Completing the squares by using

(F+BTP)(F+B"P) = FTF+ F'B*P+PBF+PBB'P,
7 2
J =28 Pzo+ /{:c“[ATP+PA+CTC — PBB™Pla+|(F+B™P)a| }dt.
0

Since the last term is always nonnegative, it follows that the minimizing value
of F is given by F = —BTP. Since the term in square brackets is zero from
the Riccati equation, it follows that the minimum value of J is ngxg.

(c) It remains to prove V < 0 along the state-trajectory with u=Fz. But using
the expression for V(t) in Part (a), the Riccati equation and the expression for
F, we get

V=12"(A"P+PA+F"B"P+PBF)z=-1"(C"C + PBB"P)z<0

for all z£0 (since (A, B, C) is assumed minimal) proving closed-loop stability.

(d) Putting in the numbers in the Riccati equation and the expression for F', we
get P=1++/2, F = —1— /2 and the minimum value of J is 1 + v/2. The
closed loop A-matrix is given by A + BF = —/2 demonstrating closed-loop
stability.



4.

(2)

The realization of G(s) is balanced if
ALY +YA +BB =AY +3XA+C'C=0

for ¥ = diag(oy,02) > 0 and where the o]s are the Hankel singular values of
G(s). A simple calculation gives ¥ = diag(1,0.4).

Let G,(s) denote a first-order balanced truncation of G(s). Then G,(s) =
G(s) + A(s) where

2
1Al 2> 0, =0.8.

=2

Then replacing G(s) by G,(s) in the loop of Figure 4 is equivalent to:

€ 0

_(E_ K(s) o Gr(s) —_—

e=—-K(I+G.K)™$

and so the loop is stable if |K(I + G, K)7 |, < Mln_ < 1.25 from the small

gain theorem. However, the set of all internally stabilig;ng controllers for G,(s)
is given by:

Now

K = Q(I - GrQ)_l
for stable Q. Furthermore,
K(I+G.K)'=qQ.

Thus we can take @ = gl where ¢ is constant (to guarantee a first order con-
troller) and |q| < 1.25 (to guarantee stabilization of G).

The DC loop gain is given by

o _ =
G(0)K(0) = G(0)g[I — G,(0)g] ™" = G(0) [¢7'1 - G,(0)] .
A high DC loop gain ensures good tracking for DC signals. Now,

-1
1y _ _§g=1 -1 _
q I GT‘(O) = l -1 q—l 2= l

A little calculation shows that this is singular for ¢ = 0.5 (which is allowed by
Part (b) above), thus ensuring infinite loop DC gain.



9.

(a) Tt is clear that we require K to be internally stabilizing.

e A simple calculation shows that, e(s) = S(s)w(s) where S(s) = [I—
K(s)G(s)]™!. Thus [le(jw)| < |SGw)|||lw(jw)||. It follows that a suf-
ficient condition to achieve the first design specification is ||S(jw)| <
lwi'(jw)|, Vw or equivalently ||W;S|| <1, where W, =w;I.

o A similar calculation shows that, u(s) = K(s)G(s)S(s)w(s). Thus ||u(jw)| <
| K (jw)G(jw)S(jw)||||w(jw)||. It follows that a sufficient condition to
achieve the second design specification is || K (jw)G(jw)S (jw) || < w3 * (jw)|,
Yw or equivalently |[W,KGS||,, <1, where W, = w,l.

e Another calculation shows that y(s) = G(s)S(s)w(s). Thus |y(jw)| <
|G (jw)S(jw)||||w(jw)]||. It follows that a sufficient condition to achieve the
third design specification is ||G (jw)S (jw)| < |ws ' (jw)|, Vw or equivalently

|W3GS||, <1, where W3 = wsl. W.S
To satisfy all design requirements, it is sufficient that ||| W KGS L
W5GS [
(b) The design specifications reduce to the requirement that the transfer matrix

from w to z=[2T zI 2I]T in the following diagram has H.-norm less than 1.
2T2 z1 zf-,l
w2 w1 w3

w
4 l A A
> K — () € > Gls) >y

The corresponding generalized regulator formulation is to find an internally
stabilizing K such that | F (P, K)||, < 1:

z —— e —

y <

(c) Let the input to A be ¢ and the output from A be 6. Then ¢ = KGS§ and
since KGS is stable, the small gain theorem implies closed-loop stability if
|A(jw) K (jw)G(jw)S(jw)||<1,Yw. Since K achieves the design specifications
of Part (a), ||A(jw)|| <|wa(jw)|,Vw is the maximal stability radius.
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6. (a) The generalized regulator formulation is given by

[ [P g | wo=raro=| 23 23 |2

~le Q=
o|lo ot
ol~ o

(b) The requirement ||H|| < v is equivalent to J := ||z||> —?||lw|> < 0, with
“””3:/ |v(t)||%dt. Let V=2T Xz and set u=Fz. Provided that X = X7 >0
0

and V <0 along the closed-loop trajectory, we can assume tl_lg]o z(t)=0. Then
V=4 Xz+z"Xi=1" (ATX+XA+F"B"X+XBF) z+2" X Bu+w" B Xz.
Integrating from 0 to oo and using z(0) = z(c0) = 0,

0= /0 "[a” (ATX+X A+ FTBTX+XBF) c+2" X Bu+uw" B' Xadt.

Using the definition of J and adding the last equation, J =
ﬁquTX+XA+ CTC+FTF + F*BTX+ XBF)z — [y*ww—2"XBw—w BT Xz} dt.
0

Let Z = F + BTX. Completing the squares by using
ZT7Z=FTF+F'B"X + XBF+XBB™X
|(yw—y"'BT X1)|? = Y*w'w—w"BTX 2 — 27X Bw+~~2s"X BBT Xz,

J=70{:::TIATX—|-XA+CTC—(1—7‘2)XBBTX]3;+||Z:r:||2—H'yw—'}z‘lBTX:er}dt.
0

Thus two sufficient conditions for J <0 are the existence of X such that
ATX+XA+C*C-(1-v)XBBTX=0, X=XT>0.

The state feedback gain is F' = —BTX (ensuring Z = 0) and the worst case
disturbance is w* = y"2BTXz. The closed-loop with these feedback laws is
i =[A—(1—y"2)BBTX]z and a third condition is therefore Re \;[A—(1—
v2)BBTX]<0, V i.

It remains to prove V<0 along state-trajectory with u=Fz and w=0. But

V=1"(ATX+XA+F"B"X+XBF)z=—2"(C"C+(1+ 7 ?)XBB"X)z<0
for all z#0 (since (A, B, C) is assumed minimal) proving closed-loop stability.
. . . . . . 1:1:152—1‘2
(c) Putting in the numbers in the Riccati equation, we get X = —==—- For
the stability condition, we need to choose the positive square root, so X =

—y—2
1+1_i_'; - It follows that the optimal 7 is the infimum value of « for which

X >0, 80 Y= 1.



