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(a) Let

G@)=_i~[ 1 s+2}

s—1|s+3 12
(i) Find the McMillan form of G(s). 4]
(i1) Determine the pole and zero polynomials of G(s). 2]

(iii) Find the poles and zeros of G(s), specifying the multiplicity of each. [2]

(b) Consider a state—variable model described by the dynamics

z(t) = Az(t)+ Bu(t)
y(t) = Cz(t).

(i) Suppose that there exists P = P’ > 0 such that

AP+ PA'+ BB <.

Prove that A is stable. (6]

(ii) Suppose that there exists @ = @’ > 0 such that
AQ+QA+C'C <.

Prove that the pair (A, C) is observable. 6]
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(a) Define internal stability for the feedback loop shown in Figure 2 below, and
derive necessary and sufficient conditions for which this feedback loop is inter-
nally stable.

[4]

(b) Suppose that the transfer matrix G(s) in the feedback loop in Figure 2 is
stable. Derive a parameterization of all internally stabilizing controllers for
the feedback loop.

4]

(c¢) Suppose that

s—1

Gls) = s+2

Let C(s) denote the transfer matrix from the reference signal r(s) to the out-
put signal y(s) in Figure 2.

(i) Show that there does not exist an internally stabilizing controller K (s)
such that C(s) is minimum-phase. 6]

(i) Design an internally stabilising controller K'(s) such that C(s) is allpass
(that is, |C(jw)| = 1 for all real w). 6]

Figure 2
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3. Figure 3 illustrates the implementation of the control law u = — Kz which minimises

J(wo,u) = [ ICa @) + lu®))f dt

subject to the nominal dynamics = Az(t)+ Bu(t), z(0) = zo. Here K = B'P and
P = P' is the unique positive definite solution of A’P + PA — PBB'P+ C'C = 0.
Assume that the triple (A, B, C) is minimal. Let G(s) = (sI — A)™'B.

T—Oﬁ)—u~ G(s) M K -

Figure 3

(a) Let L(s) = I+ KG(s). Show that

L(jw)'L(jw) = I + G(jw)'C'CG(jw).

[6]

(b) Suppose that the nominal model G(s) is stable and that in the actual imple-
mentation of the loop, we use K,(s) = K + A(s) where A(s) is a stable
perturbation. Derive the maximal stability radius (using the L, -norm as a
measure) for the feedback loop when K is replaced by K,(s). The stability
radius should be given in terms of ||G||co- [7]

(c) Suppose that the nominal model G(s) is stable and that the actual system
is given by Ga(s) = G(s)(I + Ay(s)) where Ay(s) is a stable perturbation.
Derive the maximal stability radius (using the Lo-norm as a measure) for the
feedback loop when G(s) is replaced by G,(s). (7]
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(a) State the small gain theorem concerning the internal stability of a feedback
loop having a forward transfer matrix A and a feedback transfer matrix S.

[4]

(b) Consider the feedback loop shown in Figure 4.1 where G(s) represents a plant
model and K(s) represents an internally stabilizing compensator. Suppose
that

-1 -1 0 1 1

AlB ~1 -125 04 |06 0.8
K(s)é[?-‘-ﬁ]z 0 04 -10]1 —-1]|€RHx
0
0

1 0.6 1 0

1 08 -1 0

K(s) »  G(s) >
Figure 4.1

(i) Show that the given realization for K(s) is balanced and evaluate the
Hankel singular values of K(s). (6]

(ii) The graph in Figure 4.2 shows the singular value plot of (I + GK)™'G.
Obtain the lowest order balanced truncation of K(s) such that the loop in
Figure 4.1 remains stable when K (s) is replaced by its balanced truncation.

(10]
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Figure 4.2

Design of linear multivariable control systems Page 5 of 7



5. Consider the feedback configuration shown in Figure 5. Here, G(s) represents a
nominal plant model and K (s) represents a compensator. The actual plant is given
by Go(s) = (I + Ay(s))(G(s) + Aq(s)) where Aq(s) and Ay(s) are stable transfer
matrices that represent uncertainties. The design specification are to synthesize a
compensator K (s) such that the feedback loop is internally stable when:

(i) A; =0 and [|A2(jw)|| < |we(jw)|, Yw, and,

(i1) Az =0 and ||A;(jw)]| < |wr(jw)|, Vo,

where

(s + 10)?

wa(s) = 10——-———(s 50)’ .

(a) Derive conditions, in terms of G(s), K(s),w1(s) and ws(s) that are sufficient
to achieve the design specifications.
[7]

(b) Derive a generalized regulator formulation of the design problem that captures
the sufficient conditions in part (a).
[7]

(c) Assume that a compensator K (s) achieves the design specifications. Comment
on the performance properties (tracking, disturbance rejection, noise attenua-
tion and control effort) for the resulting feedback loop.

[6]

K(s) G(s) >

L 4

Figure 5
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6. Consider the regulator shown in Figure 6 for which it is assumed that the triple
(A, B, C) is minimal and z(0)=0.

29 w
P ! 5 T I T=y o |- 2
A
Figure 6
Let z = 2 and let H denote the transfer matrix from w to z. A stabilizing

state-feedback gain matrix F is to be designed such that, for given v>0, ||H||, < 7.

(a) Write down the generalized regulator system for this design problem.

[6]

(b) By using the Lyapunov function V(t) = z(t)" Xz(t), where X is to be deter-
mined, derive sufficient conditions for the solution of the design problem. Your
conditions should be in the form of the existence of a certain solution to an
algebraic Riccati inequality. It should also include an expression for ' and an
expression for the worst-case disturbance w.

Use the identity

(@R - o '8)T(aR — a~'S) = o’ RTR + a725TS — R'S - S"R,

for scalar a # 0 and matrices R and S to complete the squares.

[9]

(c) Suggest an algorithm for solving the algebraic Riccati inequality derived in
part (b) using linear matrix inequality techniques. Ignore any issues associated
with stability. [5]
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(a) (i) By performing the following elementary operations:
(A) r oy = (54 3)m
B) ca v ca—(s+2)cy
(C) ¢y & —cy

the McMillan form of G(s) is given by

s+3 1 0 s+ 6 0 -1

G(s):[ : OHS—EI 0 Hl S+2J:L(3)M(3)R(s)

where L(s) and R(s) are unimodular.

(ii) The pole and zero polynomials are given by

@(s)zs—l, {z(s)=s+6’

respectively.

(iii) It follows that the system has a|simple pole at 1 |and a|simple zeros at —6|.

(b) (i) Let 2’ # 0 be a left eigenvector of A and let A be the corresponding eigen-
value. Then multiplying the controllability Lyapunov inequality from the
left by 2’ and from the right by z gives (A 4+ X\)2/Pz + 2’ BB’z < 0. Since
P > 0 it follows that 2Pz > 0 and since z’BB’z > 0 it follows that
A+ A < 0so that A is stable.

(ii) Let 2’ # 0 be a left eigenvector of A and let A\ be the corresponding
eigenvalue. Then multiplying the observability Lyapunov inequality from
the left by 2’ and from the right by 2z gives (A + M\)2'Qz + 2’C'Cz < 0.
Since () > 0, a dual proof to that given above shows that A is stable, so
that A+ A < 0. Since @ > 0 and z # 0, 2Qz > 0. Thus 2/C'Cz > 0 and
so C'z # 0. It follows that the pair (A, C) is controllable by the PBH test.



2. (a) Inject a signal d in between G(s) and K(s) and call the input to G(s), u and
the input to K(s), e. The loop is internally stable if and only if the transfer ma-

trix from [ f } to [ Z } is stable (no poles in the closed right half plane). Since

BN NN

the loop is internally stable if and only if T-!(s) is stable.

(b) Since G(s) is stable, we proceed as follows. Note that

R I [P

Hence

-G T 0 I-GK -G I|7|o (-GK) ||G I

[ I -K ]‘1{1 ~K ]“1[ I 0 ]t{[ K(I-GK)™ H I o] .
Finally, since (I — GK)™' = I + GK(I — GK)™!, it follows that if G is sta-
ble, then the loop is internally stable if and only if Q@ := K(I — GK)™! is
stable. Rearranging terms shows that K is internally stabilizing if and only if
K =Q(I + GQ)™! for some stable Q.

(¢) Since in both cases K(s) is required to be internally stabilizing,
K=QI+GQ)™
for some stable (). A simple calculation now shows that

C(s)=GK(I - GK)™' = GQ.

(1) Since @ is required to be stable, it follows that:
‘the nonminimum-phase zero of G cannot be cancelled.

(ii) Since C(s) is required to be allpass, we set




3. (a) By direct evaluation, L(jw)'L(jw) =
I'+ K(jul = A)7'B + B'(—jwl — A 'K’ + B'(—jwl — A)'K'K(jwl — A)™'B

But
K'K=AP+PA+CC = ~(—jwl — A")P — P(jwl — A)+ C'C

from the Riccati equation. So, L(jw)'L(jw)
= I+ K(jwl — A)"'B+ B'(~jwl — A)'K’
+B'(—jwl = A)7~(=jwl = A')P - P(jwl — A) + C'C|(jwl — A)~'B
= I+[K - B'P|(jwl - A)7'B + B'(~jwl — A)"'[K' - PB]
+B'(—jwl — A 'C'C(jwl — A)"'B
= [+ G(jw)C'CG(jw)

(h) Let € be the input to A; and & be the output of A;. Then

¢=—G(6+Ke) = —(I+GK)™'Gs = ~G(I + KG)™'6.

Using the small gain theorem (since G(s) and the regulator are stable and the
perturbation is assumed stable), the loop is stable if | A, G(I + KG) <1
But part (a) implies that g[I + KG(jw)] > 1 which implies ||(I + KG)' . <
1. This shows that the loop will tolerate perturbations of size [ [|A; lo < IGIIJ
without losing internal stability since

18,6 + KG) T, < 1
(¢) Let ¢ be the input to Ay and & be the output of A,. Then
¢=-KG(l+e)=~(I+KG)'KGs =L NI -L)§ =(L™" - N6

Using the small gain theorem (since the regulator is stable and the perturbation
is assumed stable), the loop is stable if [|Ay(L~! —I)|| < 1. But part (a)
implies that

oo

G[L(jw) ' =1 < 1+5[LGjw) ] <1+ a[L(Gw)] <2

This shows that the loop will tolerate perturbations A, of size 1Az, < 0.5
without losing internal stability.




(a) |Suppose that both A(s) and S(s) are stable.| Then the feedback loop with

forward transfer matrix A(s) and feedback transfer matrix S(s) is stable if

(b) (i)

18(s)S(8)llo < 1.

The realisation is balanced if
AL +SA + BB =AY+ SA+C'C =

for © = diag(oy,02,03) > 0 and where the ojs are the Hankel singular
values of K(s). A simple calculation gives

¥ = diag(1,0.4,0.1).

Let K,(s) denote an rth order balanced truncation of K (s). Then K, (s) =
K(s)+ A.(s) where

3
1Al £2 D2 i (1)
i=r+1

Then replacing K (s) be K,(s) in the loop is equivalent to:

=

K(s) PO~ 6s)

Y

Let € be the input to A, and § be the output of A,. Then
—(I+GK)'Gé
and so the loop is stable if ||A, || |( + GK)™'G||, < 1. However,
I(I+GK)'G|, <1

from the graph. It follows from Equation (1) above that r = 1 will guar-
antee that ||A, |, < 2(0.4+0.1) =1 and the loop will be stable. So

-1]1 1
K, (s) = { 00 :]
0 0

is a first order internally stabilising controller for G(s).
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5. (a) It is clear that we require K to internally stabilize the nominal model. Sup-

pose that A; = 0 and let the input to A, be € while the output from A, be
d. Then a calculation shows that e = —C§ where C = (I + GK)~'GK is the
complementary sensitivity which is stable. Using the small gain theorem, to
satisty the first design requirement, it is sufficient that || Aq(jw)C(jw)|| < 1, Vw.

This can be satisfied if | [[W,C|| , < 1

, where W5 = woI. An analogous proce-

dure shows that to satisfy the second design requirement, it is sufficient that
A1 (jw) K (jw)S(jw)|| < 1,Vw where S = (I + GK)™! is the sensitivity. This
can be satisfied if | ||W, K S| < 1|, where W; = w,I. To satisfy both design

requirements, it is sufficient that ’ {

WiKS
W,C

< 1.

o0

(b) The design specifications reduce to the requirement that the transfer matrix

T T

from r to z = [z 27]7 in the following diagram has H..-norm less than 1.

T 21 T 29

Wl(S)

A

3

Wy (s) d
A

U

A

G(S) ;é)—-—»—y

{MNee

T,

The corresponding generalized regulator formulation is to find an internally
stabilizing K such that ||F(P, K)| < 1:

< -+ r———— r
) Pl) |
° <
> K(s)
. 0| WG
po|fu Pu_ 0| WG
Py Py | T —c

(¢) Now, [[K(jw)S(jw)ll <|wi (jw)| and ||C(jw)|| <w;(jw)],Vw. Since wi* and

wy ' are low pass, we expect |a limited bandwidth of u] (since u(jw) = —-K(jw)S(jw)),

which implies low control effort (up to 1 radians/second) and | good noise attenuationl
beyond 10 radians/second (since ||y(jw)|| <||C(jw)||||lv(jw)|| with r=0,d=0).

INothing can be said about the tracking and disturbance rejection| properties

of the loop which may therefore be unacceptable.



0. (a) The generalized regulator formulation is given by

A|\B|B
z(s) w(s) Pi(s) Pp(s)|s| Co]o
{y(s) J (3)[ u(s) ]a u(s) y(s), P(s) [Pm(s) Pos(s) oltolr
1100

(b) The requirement ||H||,, < v is equivalent to J := |z||5 —~¥?|w|? < 0, with

o]|3:= /Ooo [v(t)||"dt. Let V=27 Xz and set u=Fz. Provided that X = XT >0
and V <0 along closed loop trajectory, we can assume tl_lglo z(t)=0. Then
V=i"Xo+a" Xé=a" (ATX+XA+F"B"X+XBF) z+3" X Bu+w"B" Xu.
Integrating from 0 to oo and using z(0) = z(o0) =0,

0= /0 "le" (AX + XA+ FTBTX + X BF) a+a" X Bw+w’ BT Xa]dt.
Using the definition of J and adding the last equation, J =

/{x’f‘[ATX+ XA+CTC + FTF+ FTBTX+ XBF)z — [y*wTw—2TXBw—w B Xz }dt.
0

Completing the squares by using

(F+B"X)(F+B"X)=F'F+F"B"X + XBF + X BBTX
|(yw—~"'BT X2)||* = v¥*ww - w"B"X z — 2TX Bw+~"22"X BB"X x,

7 :7\{1*7{A7X+XA+CTC—(1—V”Q)XBBTX]x—kH(F-i—BTX)xHQ— [yw—~~" BT Yat.
0

Thus two sufficient conditions for J <0 are the existence of X such that

ATX + XA+CTC—(1-7")XBBTX <0,| |X=XT>0.

The state feedback gain is and the worst case disturbance is w* =
~~2BT X z. The closed-loop with these feedback laws is & =[A—~(1—y~?)BBT Xz

and a third condition is therefore | Re \JA—(1—-v"2)BBTX]<0, V i.

It remains to prove V < 0 along state-trajectory with u=Fz and w=0. But

V=2 (ATX+X A+ FTBTX+XBF) 5 < -z (CTC+(1+ 7 )X BBTX)z <0

for all #0 (since (A, B, C) is assumed minimal) proving closed-loop stability.

(¢) Multiply the Riccati inequality from the left and right by X! to get AX 1+

X1AT-BBT + X 1CTCX'+~42BB* <0. Using a Schur complement argu-

AX '+ XPAT+ (v 2 —-1)BBT X-1CT
CX! —I

ment this can be linearized as { <0.




