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| Let the transfer matrix G(s) have a state space realisation

— N O
= WO

O Ol OO
O = O =
— Ol O DN

(a) Find the uncontrollable and/or unobservable modes and determine whether
the realisation is detectable and stabilisable. (4]

(b) Determine whether there exist matrices
K € R*™3,
and

L e R
quch that A — BK and A — LC are stable. Justify your answer. (4]

(c) Find a minimal realisation for G(s). (4]

(d) Find the McMillan form of G/(s) and determine the pole and zero polynomials.
What is the McMillan degree of G(s)? (4]

(e) Determine the system zeros, indicating the type of each zero. (4]
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9. (a) Define internal stability for the feedback loop in Figure 2.1, and derive neces-
sary and sufficient conditions for which this loop is internally stable. (6]

(b) Suppose that G(s) is stable. Give a parameterisation of all internally stabilising

controllers for G(s) for the feedback loop in Figure 2.1. (4]
r e Y
K(s) > G(s) —
Figure 2.1

(c) Let G(s) be given by

1 1
s+1 s+2

G(s) = |
0 T

Suppose now that an output multiplicative uncertainty on G(s) is introduced
as shown in Figure 2.2. Design an internally stabilising controller K(s) that
satisfies the following performance and robustness design specifications:

i. When A =0, the transfer matrix from r to e, S(s), satisfies I1S(0)|| <1/2.

i\, The feedback loop is stable for all A € RH, such that |A] < 1. [10]

K(s) S Gls) Vg S

Y

o

Figure 2.2
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3. (a) Let A€ R**™ and B € R"*P be given. Suppose that AP+ PAT+BBT =0

where
6 3 -2
P = 3 12 6
-2 6 18

By using Gershgorin’s theorem, show that A is stable and that the pair (A, B)
is controllable.
[4]

(b) For the feedback loop in Figure 3.1, state a Nyquist type stability criterion in
terms of the direct Nyquist array of a transfer matrix G(s). 6]

G(s) .

Figure 3.1
(¢) Consider the feedback loop in Figure 3.2. Here

[ 5/(s+1) 1/(s+4)
Gls) = [ 1/(s+4) 5/(s+1) } )

and A(s) is a transfer matrix representing a stable additive structured uncer-

tainty of the form
B 0 d12(s)
A(s) = [ 6u(s) 0 .
Use the answer to Part (b) to derive the maximal stability radius (using the

£..-norm as a measure) guaranteed by Gershgorin’s theorem for the feedback
loop in Figure 3.2 below. [10]

Figure 3.2
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4. Figure 4.1 illustrates the implementation of the control law u = — Kz which min-
imises

Jao,w) = [ ICa(@)IP + u()|* d
0
subject to @ = Az(t)+ Bu(t), z(0) = zo. Here K = B'P and P = P’ is the unique

positive definite solution of A'P+PA—PBB'P+C'C =0. Assume that the triple
(A, B,C) is minimal. Define G(s) = (s/ — A)"'B.

L.?L ) ]

Figure 4.1
(a) Let L(s) = I + KG(s). Show that

Y
Y

L(jw)' L(jw) = I + G(jw)'C'CG(jw), Yw € R. [5]

(b) Derive the smallest upper bounds on ||({ + KG)™||,, and ||[({ + KGY KA,
guaranteed by Part (a). 5]

(c) Suppose that stable perturbations A; and A, are introduced as shown in Fig-
ure 4.2. using the answer to Part (b), derive the maximal stability radius (using
the L.-norm as a measure):

(i) for Ay when Ay =0, [5]
(ii) for Ay when Ay = 0. [5]
> JAN) Ay
r
o Gls) > K -

Figure 4.2
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5 (Consider the feedback configuration in Figure 5.1. Here, G(s) is a nominal plant
model and K(s) is a compensator. The transfer matrices A.(s) and A, (s) repre-
sent stable additive and multiplicative uncertainties on G/(s). The uncertainties are

described as follows:
Al < wa(jw) 7], Ve
ARGl < wn(iw)™], Ve
where w,(s) and wy,(s) are high pass filters.

The design specification is to synthesise a controller K (s) such that the closed-loop
is stable

(a) for all A, when A, =0, and,
(b) for all A, when A, = 0.

Y
>
f=3
o~
[vaY
g
>
3
Ve
n
S’

K(s) o G(s) (D

Figure 5.1

(a) Derive Hoo-norm bounds, in terms of G(s), K(s),ws(s) and wn(s) that are
sufficient to achieve the design specifications. (6]

(b) Derive a generalised regulator formulation of the design problem that captures
the sufficient conditions in Part (a). [10]

¢) Assume that a compensator K(s) achieves the design specifications in Part
g

(a). Let n(s) denote sensor noise in the feedback-loop in Figure 5.2 below.

(lomment on the noise attenuation properties of this loop. (4]

- K(s)

G(s) >

Y

Figure 5.2
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6. Consider the simplified generalised regulator shown in the figure below.

)

Assume that z(0) =0 and that (A, B,C) is minimal. The design objective is, for
a given >0, to find a stabilising state-feedback gain matrix F', if it exists, such that

J = ||z]|2 = 73||lw]|2 <0, Vw such that |Jwl|; < oo,

where z = [ 2 } and with ||v]|§:/ llo(®)||%dt and |jv(t)]|*:=v(t)Tv(t).

(a) Write down the generalised regulator system for this desigh problem.

[8]

(b) By using the Lyapunov function V(t) = z(¢)T Xz(t), where X is to be deter-
mined, derive sufficient conditions for the solution of the design problem. Your
conditions should be in the form of the existence of a certain solution to an
algebraic Riccati equation. It should also include an expression for F and an
expression for the worst-case disturbance w.

Use the identity
(aR—a'S)T(aR—a™S) = a®?RTR+a28TS — RS - STR,

for scalar @ #* 0 and matrices R and S to complete the squares.

(8]

(c) Comment on the sufficient conditions in the limit as ¥y — oo. (Hint: Read
Question 4.) (4]
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(a)

(c)

Ronl (19

Design of Linear Multivariable Control Systems

Solutions 2001/2002

Since [A — sI B] loses rank for s = —3,|—3 is an uncontrollable mode, | and

since [AT — sI C7] loses rank for s = 4, |4 is an unobservable modﬂ Since

the uncontrollable mode is stable, rthe realisation is stabilisable | and since the

unobservable mode is unstable, ‘the realisation 1s not detectable.l [4]

Since the mode A = —3 is uncontrollable, it cannot be assigned via state
feedback. However, since it is stable, the matrix | K exists.| Since A = 4 1s
unobservable, it cannot be assigned via output injection and since it is unstable,

| L does not exist. | [4]

By removing the uncontrollable and unobservable modes we get the minimal
realisation

s+1 4
s—1 s—1 1 [3+1 4 }
Ts=T| 1 s+l
1 s+1 5+ .
s—1 §— [4]

By performing the following elementary operations: (1) ry & 1o, (2) 7o =
ro—(s4+1)r1, (3) ¢z := ea — (s 4+ 1)y, (4) cg = —cz, the McMillan form of G(s)
is given by,

L s+l 1[0 1os+1] Sl
7(.5’)—|: | 0}[501 3—1—3][0 1 }—. (s)M(s)R(s),

where L(s) and R(s) are unimodular.
The pole and zero polynomials are given by

pis)=s—1,] & |z(s)=s+3

respectively. ﬁ‘he McMillan degree 1s 1} since it is equal to the degree of the
pole polynomial. 4]

Since s = —3 is an uncontrollable mode, | —3 is an input decoupling zeroj

Since s = 4 is an unobservable mode, lZis an output decoupling zero. | 1t fol-

lows from Part (d) that the system has a @nsmission zero at s = —Ii.J 4]

~ X~
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(a)

Inject a signal d in between G(s) and K(s) and call the input to G(s) u. The
loop is internally stable if and only if the transfer matrix from [ jl } to [ ((l }

is stable (no poles in the closed right half plane). Since

£ ][]

the loop is internally stable if and only if T7'(s) is stable. 6]

Since (3(s) is stable, we proceed as follows. Note that

[ -k] [ 1 ol[l =K
G I |7 l=g 1\lo I-GK |
Hence

-k V(0 -k 171 o] L[ KU-GK)T[ T 0],
-G I 10 I-GK -G I| |0 (I-GK)! G oI
Finally, since ([ — GK)™! = [ + GK(I — GK)™', it follows that if G is sta-
ble, then the loop is internally stable if and only if @ := K(I - GK)™is

stable. Rearranging terms shows that K internally stabilising if and only 1f

K = QI+ GQ)~* for some stable Q). [4]

Since K is required to be internally stabilising, | K = Q( + GQ)Y™! | for some

stable ) from Part (b). We search for a stable @) to satisfy the design require-
ments. Let the input to A be ¢ while the output from A be d. Then a simple
calculation shows that ¢ = ('8 where C = (I —GHK)"'GK is the complementary
sensitivity which is stable. Now

C=GK(I—-GK)" =GQ.

The small gain theorem implies that for K to stabilise the loop in Figure 2.2
for all A such that ||Al|l < L, we must have [|GQ]|, <1, so we choose

s+1 M}

s+2
0 s+1

00 = ()G ()] = his) [

where h(s) must satisfy ||h]|,, < 1. To ensure that Q) is stable and proper, we
may choose

h(s) = ho/(s + 1)*

with —1 < ho < 1 to satisfy the infinity norm constraint.

Since the transfer matrix from r to e is
S(s) = (I = G(s)K(s)™ =1+ G(s)Q(s) = [1 + h(s)]I = [+ h0/(s + 1)y*]1

we also need |1 4 ho| < 1/2. It follows that any ‘—1 < hy < -O.SJ will satisfy
the design specifications. [10]
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3. (a) The matrix A will be stable and the pair (A, B) controllable if P > 0. Using
Giershgorin’s theorem, the eigenvalues of P lie in the union of the discs,

A-12] < 9,
|A—18] < 8
[t follows that [the eigenvalues are positive and so P > OJ (4]

(b) Let Gi(s) have P closed right half plane poles. Assume that [ + G(s) is diago-
nally dominant, that is, |1 4+ Gii(s)] = 2 |Gi(s)], for all 7 and for all s on the
Nyquist contour. Here I denotes the identity matrix. Let the ith Gershgorin
band of G(s) encircle the point —1 a total of N; times anticlockwise. Then

the loop is internally stable if and only if 32; Ni = }j (6]

Nygquist Diagrams

From: U{l)
3 T T T T T T T

w

o

%

< _

o —

M e :

@ - R T .
3 u +

i

o) .

a ]

=

]

s | | I I \ | |

Real Axis

(¢) For the given G(s), P = 0. The Nyquist plots for Gy and Gag, which coincide.
are shown above. Note that the closest distance from the Nyquist diagrams
fo the point —1 + 70 is 1. Since ||Gallo, = [|G2llo = 1/4, it follows that we
can tolerate 85 and day such that max{||é12|. 1621]l..} < 3/4. It follows that

the maximal stability radius is 3/4.

[10]
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4.

(a) By direct evaluation, L(jw) L(jw) =
1+ K(jwl — A)7'B + B(—jwl — AR + B'(—jwl — AYVTK'K (jwl — A'B

But

K'K = AP+ PA+C'C = —(—jwl — AP = P(jwl — A)+ C'C

from the Riccati equation. So, L(jw) L(jw)

[+ K(jwl = A)7'B + B'(—jwl — AT K

+B(—jwl — A —(—jwl — AP — P(jwl — A) + C'Cl(jwl = A)7'B
[ +[K — B'P|(jwl — A)'B + B'(—jwl = A)7'[K'— PB]

+B(—jwl — A)ICICGwl — AT B = [+ Gjw)' C'CG(jw) 5]

(b) Part (a) implies that g[l + KG(jw)] > 1, Vw e R. It follows that

10+ KG) . <L

Now, ([ + KG)'\KG=L(L7' =1)=1-— L~1. Thus, Part (a) implies that

‘ 1
GLGjw) ™ =1 <1+0o[L(jw) )| <1+ 73 =2
(L) = 1) <1+ ol ) S 1+ S
so that
([ +KG)'KG|,, <2
[5]
(¢) (i) Set Ay =0. Let ¢ be the input to A, and § be the output of Ay, Then

e=—(0+ KGe)=—(1+ KG)y™'4

Using the small gain theorem (since the regulator is stable and the per-
turbation is assumed stable), the loop is stable if [|A((] + KG)y ', <L
But Part (b) implies that ||(/ + KG) ., < 1. This shows that the loop
will tolerate perturbations of size

A, <1

[5]

without losing internal stability.

Set A, = 0. Let ¢ be the input to Ay and & be the output of A,. Then
e=—-KG(6+e)=—(1+ KG)”‘KG(S.

Using the small gain theorem (since the regulator is stable and the pertur-
bation is assumed stable), the loop is stable if [[Az(] + KG)y 'K, < 1.
But Part (b) implies that ||(I + KG)'KG|, < 2. This shows that the

loop will tolerate perturbations A, of size

|1A2],., < 0.5

without losing internal stability. (5]

~¥
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5. (a) It is clear that we require K to be internally stabilising. Let the inputs to
A, and A,, be ¢, and ¢, while the outputs from A, and A, be &, and 0,
respectively.

o A simple calculation shows that, when A,, =0, ¢, = K(I — GK)™ 6, It
follows from the small gain theorem that a sufficient condition to achieve
the first design specification is || K (jw)[I — G(jw)K (jw)|| < |w; ' (jw)|, o
or equivalently | ||Wo. K (I — GK)™'|,, < 1,|where W, = w,l.

e When A, = 0, a similar calculation shows that €, = GK(I — GN)7'd,,.
Tt follows that a sufficient condition to achieve the second design specili-
cation is ||G(jw)K (jw)I — Gjw)K (jw)|| < lw ! (jw)], Vw or equivalently

|WnGE (I — GK)Y|,, <1,|where Wy, = wp .

Thus, to satisfy both design requirements, it is sufficient that

W, K(I-GK)™
W,.GK(I-GK)™"

< 1.

[6]

(b) The design specifications reduce to the requirement that the transfer matrix

from r to z = [27 2117 in the following diagram has H..-norm less than 1.

tr b
(A0S I T

3 3

[N}

The corresponding generalised regulator formulation is to find an internally
stabilising K such that || Fi(P, K)||,, < 1:

z e 7

< U

€

0| W,
P:[Pu P12]: 0l W,,G [10]

P21 P22 Ji G

(¢) The transfer matrix from n(s) to y(s) is the same as that between r and y.
Thus mle noise attenuation properties are satisfactory since w, is high pass.J

(4]
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6. (a) The generalised regulator formulation is given by

AlB|B

B
0
[
0

o|lo ol T

8]
(b) Let V = 2T Xz and set w= Fz. Provided that X = X7 >0 and we show that
V" <0 along closed loop trajectory, we can assume rli}n x(t)=0. Then

V=i XetaT Xe=aT (ATX+XA+FTBTX+XBF) a+a" X Bw+uw' B' X,
Integrating from 0 to oo and using z(0) = z(o0) = 0,
0= / 7 (ATX+ XA+ FTBTX 4+ XBF) z+2" X Bu+w” BT Xa]dt.
0
Using the definition of J and adding the last equation,

J= /{J?T (CTC7+ FTF) & —~*wlw}dt
0

_ / (2TTATX+ XA+ CTC+ F'F 4+ FTBTX+ XBF)z — [y*ww— 2 X Bw—w BT Xe| Ydt.
0

Completing the squares by using
(F+B™X)(F+B™X)= F'F + FTB™X + XBF+ X BB'X
(vw—~y""BYX2)T (yw — v ' BT X 2) = y*wTw—w'B X2 —2"X Bw+~~ 22X BB Xz,

./:/{mT[ATX+XA+CTC—(1—fy-?)XBBTX]HH(F+BTX)xH2—

0

R AE 'BTX @ H z}dt-

Thus two sufficient conditions for J <0 are the existence of X such that
ATX + X A+CTC - (1—y"2)XBBTX =0, X=XT>0.

The state feedback gain is ' =—BTX and the worst case disturbance is w” =

~~2BT X 2. The closed-loop with these feedback laws is & = [A~(1—"*) BB" X
and a third condition is therefore | Re A\;,JA—(1—y"?)BB"X]<0, V1.

Tt remains to show that V < 0 along state-trajectory with u = Fz and w = 0.
Using the Riccati equation in the expression for V

V=2t (ATX+ XA+ FTBTX+ XBF) a=—2"(CTC+(1 +77%) X BB X)r <0,
for all 20 (since (A, B, () is assumed minimal) proving closed-loop stability.

(8]

(¢) In the limit as ¥ — oo, the sufficiency conditions above give the solution of the

LQR problem of minimising J; = ||z||§ with w = 0 and starting at z(0).| [4]




