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1. Let the transfer matrix G(s) have a state space realisation

(120 0|1 2]

0 300[00

.[A[B] _|004 0|34
G(S)_[C D]'“ 000 500
230010

|1 40 0{0 1]

(a) Find the uncontrollable and/or unobservable modes and determine whether
the realisation is detectable and stabilisable. [4]

(b) Suppose that K € R?*** and L € R**? are arbitrary matrices. Determine two
of the eigenvalues of A — BK and two of the eigenvalues of A — LC. Explain
how you arrive at your answer. (4]

(c) Find a minimal realisation for G(s).

[4]

(d) Find the McMillan form of G(s) and determine the pole and zero polynomials.
What is the McMillan degree of G(s)? (9]

(e) Determine the system zeros, indicating the type of each zero.

- 4]
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2.

(a)

(b)

Define internal stability for the feedback loop in Figure 1, and derive necessary
and sufficient conditions for which this loop is internally stable. (6]

Suppose that G(s) is given by

1 1
s+1 s+2
G(s) = s+1 s+
0o 1
s+1
Give a parameterisation of all internally stabilising controllers for G(s). 7]
y
T—?L I((s) > G(s) -
Figure 1

Let G(s) be as given in Part (b) and let S(s) denote the transfer matrix from
r to e in Figure 1. Suppose now that an uncertainty on G(s) is introduced as -
shown in Figure 2, with A(s) a stable transfer matrix satisfying

[AGW)]] < 1+ jwl?, Yw € R,

Using the answer to Part (b) design a controller K'(s) which internally stabilises
the feedback loop in Figure 2 for all A(s), and such that ||S(0)] < 0.1. [12]

Y

A(s)

G(s) L L__..

Figure 2

\d
4

K(s)

—~0
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3.

(a)

(b)

State Gershgorin’s Theorem concerning the location of the eigenvalues of a
complex matrix. Let

4 0 0 &
. 0 -3 52 0 o ydxd
A=119 s 9 o |EFR
& 0 0 =1

Using Gershgorin’s Theorem, give a range of values of §; and &3 for which A is
guaranteed to have all its eigenvalues in the left half of the complex plane.

[7]

For the feedback loop in Figure 3, let K be a constant diagonal matrix. State
a Nyquist type stability criterion in terms of the direct Nyquist array of G(s).

[6]

.[{ »- G(S) >
Figure 3
Consider the feedback loop in Figure 4. Here
5 .
21 0 .,
G(S):f:’s_ 5 ’ I(:[%l ]\?}y
| 2

and A(s) is a transfer matrix representing a structured uncertainty of the form

_ 0 512(5)
A(S) o [ 521(8) 0
such that [|Alle < 1. Use the answer to Part (b) to derive the range of values
of ky and k; for which the closed-loop system is guaranteed to be internally
stable. [12]

Figure 4
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4. Figure 5 illustrates the implementation of the control law u(t) = —Ka(¢) + r(t)
which (when r(¢) = 0) minimises

J(wow) = [ |C2@I + [u()] de

subject to z(t) = Az(t)+Bu(t), (0) = zg where K = B’P and P = P’ is the unique
stabilising solution of the Riccati equation A’P + PA ~ PBB'P 4+ C'C = 0. Here,
T' denotes the complex conjugate transpose of T'. Assume that the triple (4, B, C)
is minimal. Let F(s)=(sI—A)™'B,G(s)=C(sI—A)™'B and L(s)=1+KF(s).

t=Az+ Bu

A 4
ey
N
V

Figure 5
(a) Show that

L(jw) L(jw) = I + G(jw) G(jw). [8]

(b) Suppose that G(s) = 3_%——3 Derive a balanced, minimal state-space realisation
G(s) = C(sI — A)"'B and evaluate K for this realisation. [5]

(c) Let G(s) and K be as in Part (b). Suppose a stable uncertainty A is introduced
as shown in Figure 6. Derive the maximal stability radius (using the Ho-norm
as a measure) for A that can be deduced from Part (a) and the small gain

~ theorem. [12]

Y

F (3) K

Figure 6
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5. Consider the feedback loop shown in Figure 7 where G(s) represents a plant model
and K (s) represents an internally stabilising compensator. Suppose that

—4 —4| 2 2
s[A|B] | -4 —5|12 16
G(S)_[T*T]“ 5 12| 0 0 | e
l 2 160 0
K(s) o G(s) .
Figure 7

(a) Show that the given realisation for G(s) is balanced and evaluate the Hankel
singular values of G(s). ]
6

(b) Design a family of first order internally stabilising controllers K'(s) for G(s)
using the following procedure:
i. Replace G(s) in Figure 7 by a first order approximation G,(s) and give an
upper bound on ||G(s) — G (5)||oo-
il. Find the set of all internally stabilising controllers for the new feedback
loop.
ili. Using the small gain theorem and the bound on ||G(s)—G,(5)||ee, choose a
family of first order internally stabilising controllers for the feedback loop
of Figure 7. 112]

(c) Design a non-dynamic internally stabilising controller K for G(s)\ such that

1K = 1. [7]
(Hint: Use the procedure outlined in Part (b) and the fact that G,(s) is rank
deficient.)
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6 Consider the feedback configuration in Figure 8. Here, G(s) is a nominal plant model
and K(s) is a compensator. The signals r(s) and n( ) are the Laplace transforms
of the reference and sensor noise, respectively. The design specifications are to
synthesise a compensator K (s) such that the feedback loop is internally stable and:

e For good tracking, it is required that, when n(s) =0,
lle(w)l
[Ir(7w)
e For good sensor noise attenuation it is required that, when r(s) = 0,

lly(Ge)ll
InGGe)l

where wy(s) is a low pass and wy(s) is a high pass filter.

r(s) e(s) y(s)
K(s) G(s) -

i n(s)

(a) Derive Heo-norm bounds, in terms of G(s), K(s),wi(s) and ws(s) that are
sufficient to achieve the design specifications. (8]

< |y (Jw) 7, Vw.

< o)™, Yoo

A 4

Y

Figure 8

(b) Derive a generalised regulator formulation of the des1gn problem that captures
the sufficient conditions in Part (a). [8]

(c) Assume that a compensator K(s) achieves the design specifications in Part
(a). Suppose now that an uncertainty A(s) is introduced as shown in Figure
9. Assume that A(s) is a stable transfer matrix. Derive the maximal stablhty

radius for [|A(jw)]||, Vw. , [9]

l——» A(S)
_’C__ ) o K(s) - G(s) H ; o ——

Figure 9
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1.

(a)

(b)

Z ool

Since [A—s! B]loses rank for s = 3 and s = 5, they are uncontrollable modes,
and since [AT — sI C7] loses rank for s = 4 and s = 5, they are unobservable
modes. Since the uncontrollable mode are unstable, the realisation is not sta-
bilisable, and since the unobservable modes are unstable, the realisation is not

detectable. [4]

Since the modes A = 3 and A = 5 are uncontrollable, they cannot be assigned
via state feedback and so they are eigenvalues of A — BK. Similarly, since
A =4 and A = 5 are unobservable modes, they cannot be assigned via output
injection and so they are eigenvalues of A — LC. [4]

By removing the uncontrollable and/or unobservable modes we get the minimal
realisation

s s — s—1 1 s+1 4
G(s)=|2{1 0 |= S .
1 s+ 1 s—1 1 s+1
1101 s—1 s-— [4]

By performing the following elementary operations: (1) ry <> ro, (2) rp =
ro—(s+1)r, (3) c2 := c2— (s+1)e1, (4) ¢z = —cg, the McMillan form of G(s)

is given by,

o=t ][ ][ o ] = reomene,

where L(s) and R(s) are unimodular.
The pole and zero polynomials are given by

p(s) =s—1, z(s) =s+3

respectively. The McMillan degree is the degree of the pole polynomial and is
therefore equal to 1. 9]

Since s = 3 and s = 5 are uncontrollable modes, they are input decoupling
zeros. Since s = 4 and s = 5 are unobservable modes, they are output decou-
pling zeros. So, s = 5 is an input/output decoupling zero. It follows from Part
(d) that the system has a transmission zero at s = —3. [4]



(b)

(c)

loop is internally stable if and only if the transfer matrix from :«i] to [ “ J
is stable (no poles in the closed right half plane). Since

BN HEEN

the loop is internally stable if and only if T “1(s) is stable, [6]

Since G(s) is stable, we proceed ag follows. Note that
I —-K] [ 1 9 I K ‘
-G I |7 g7 0 I-QK
Hence

o ST e

Finally, since (U~GR)' =14 GK(I -GK)1 it follows that if (7 is stable,

then the loop is internally stable if ang only if () ;= K(I - GK)1 i5 stable.
Rearranging terms shows that K is internally stabilising if and only if K =
QU+ GQ)! for some stable Q. [7]

Since K is required to be internally stabilising, § = QI + GQ)™! for some
stable @ from Part (b). We search for 4 stable ) to satisfy the design require-
ments. Let the input to A be € while the output from A be §. Then a simple
calculation shows that ¢ — C'§ where ¢ = (/-GK)"'QK is the complementary
sensitivity which is stable. Now

S = (I-GK) =, GE(I-GK) 7 =14 qg
¢ = GE(I-GK)' =g,

The small gain theorem implies that for K to stabilise the loop in F igure 2 for

all A, we must have

. . 1
1G(70)Q(jw))f < 0T ep

S0 we chooge

L el
g = [ ]

where —1 < h < 1 is to be determined. Since
SO0)=71+ G(O)Q(O) =(l+h)1,
it follows that any —1 < < —0.9 will satisfy the design spectfications. [12]



3.

(a)

(b)

Gershgorin’s Theorem: Let A be any n X n complex matrix. The eigenvalues
of A lie in Dy, the union of the discs,

[l —mu| <D Imyl, i=1,...,m,
J#t
and they also lie in D, the union of the discs,
|l—mii|§2|mﬁ|, z=1,,n
i
For the given A, taking column sums, the Gershgorin discs are centred on
—4,—3,—2 and —1 and have radii |6;],|d2|, |62| and |§;], respectively. Thus D,
lies in the closed left half plane if —1 < é; < 1 and —2 < §, < 2. [7]

Let G(s) have P closed right half plane poles. Assume that K~! 4+ G(s) is
diagonally dominant, that is, ]7%: + Gi(s)] = 22 |Gji(s)], for all 7 and for all
s on the Nyquist contour. Let the ¢th Gershgorin band of G(s) encircle the
point —7%; a total of N; times anticlockwise. Then the loop is internally stable
if and only if 3°; N; = P. [6]

Nyquist Diagrams
From: U(1)
T

Imaginary Axis

To: Y(1)

Real Axis

For the given G(s), P = 1. The Nyquist plots for Gy; (left circle) and G
(right circle) are shown above. Since ||A|, < 1, it follows that |[d12] . < 1
and ||821]|,, < 1. Thus the Gershgorin circles all have radius 1 at most. To guar-
antee stability, it is sufficient that the number of anticlockwise encirclements

by the Gershgorin bands of Gy; .of -—7%1; and the number of anticlockwise en-
circlements by the Gershgorin bands of Gy, of ~7€1; is 1. Thus the closed-loop
system is stable if —4 < _791_{ < —1 (equivalently, if 0.25 < k; < 1) and if,
—%; > 6 (equivalently, if ky > —%)r) or _klg_ < —1 (equivalently, if k2 < 1).

[12]



4.

(a)

(b)

By direct evaluation, L(jw) L(jw) =
[+ K (jwl - A)" B4 B'(—jwl — A) K"+ B (—jwl — A KK (jowl — A)~'B.

But

K'K = A'P 4 PA+ C'C = —(—jwl = A')P — P(jwl — A) + C'C

from the Riccati equation. So, L(jw) L(jw)
= I+ K(jwl — A)'B + B'(—jwl — A)"'K’
+B'(—jwl — A) —(—jwl — AP — P(jwl — A) + C'C|(jwl — A)~'B
= [+ [K —B'P|(jwl — A)'B+ B'(—jwl — A)"'[K' — PB]
+B'(—jwl — A)'C'C(jwl — A)™'B
= [+ Gw)C'CG(jw).

A minimal, balanced state-space realisation of G(s) is given by

oo [848]- 24

The Riccati equation becomes
—3P —3P —4P*+4=0

which has a stabilising solution P = 0.5. Hence K = B'P = 1. [5]

Let ¢ be the input to A and § be the output of A. Then

c=—K(+Ge)=—(I+KG)KS.

Using the small gain theorem (since the regulator is stable and the perturba-
tion is assumed stable), the loop is stable if ||A(I + KG)™'K]||_ < 1. But
Part (a) implies that o[/ + KG(jw)] > 1 which implies ||(I + KG)7*||, < 1.
Furthermore, K = 1 from Part (b). Hence the loop will tolerate perturbations
of size (measured in the H o norm) at least 1 without losing internal stability,
since ||A||,, < 1 implies that

AT + K@) K|, < 1.
[12]



5.

(a)

The realisation of G(s) is balanced if
AL+ XA+ BB = AN+ XA+ C'C =0
for ¥ = diag(oy,02) > 0 and where the ols are the Hankel singular values of

G(s). A simple calculation gives ¥ = diag(1,0.4). [6]
—412 2
G.(s)=| 2 {0 0O

4 [ 11 }
2 1o o s+4 (11
denote a first order balanced truncation of G(s). Then G,(s) = G(s) + A(s)

where

Let

2
1A, <2> 0, =0.8.

=2

Then replacing G(s) by G,(s) in the loop of Figure 7 is equivalent to:
€ 5

T A

K(s) _,O____>

Y
Q
~—~
V)
~—

Now ¢ = —K(I+G,K)™'§ and so the small gain theorem implies that the loop
is stable if ||[AK (I — G, K)™|_, < 1 which is guaranteed if || K(I — G, K)7 |, <
1.25 since ||All,, < 0.8. However, the set of all internally stabilising con-
trollers for G,(s) is given by K = Q(I + G,.Q) ! for stable Q). Furthermore,
K(I — G,K)™!' = . Thus we can take @ = ¢/, where ¢ is constant (to guar--
antee a first order controller) and |g| < 1.25 (to guarantee stabilisation of G)-
For example, taking ¢ = —1 gives

-3] 1 1
Kis)=| 1 [-1 0 |-
1 0 -1

[12]

Arguing as in Part (b), the set of all internally stabilising controllers for G, (s)
is given by K = Q(I + G,.Q)™" for stable ). Since G, has rank 1, we can
ensure that K is non-dynamic by choosing non-dynamic @) such that G,Q) = 0.

A possible choice is
1 -1

giving K = (). Finally, to guarantee stabilisation of G and to ensure that
|K|| > 1 we choose ¢ such that 1 < ||Q|| = v/2|q| < 1.25, or _\}_5 <|ql < _1_\/2_55[ |
7



6.

(a) It is clear that we require K to be internally stabilising.

e A simple calculation shows that, when n(s) = 0, e(s) = —S(s)r(s) where
S(s) = [I+G(s)K(s)]™* is the sensitivity. Thus ||e(jw)|| < [|SGw)|l||Ir(Gw)]l-
It follows that a sufficient condition to achieve the first design specification
is ||S(jw)]| < Jwit (jw)]|, Yw or equivalently ||W; S|, < 1, where W) = w, [.

e When r(s) = 0, a similar calculation shows that y(s) = —C(s)n(s) where
C(s) = G(s)K(s)[I+ G(s)K(s)]"! is the complementary sensitivity. Thus
ly(gw)ll < ICHW)||In(jw)|. It follows that a sufficient condition to
achieve the second design specification is ||C'(jw)]| < |wy* (jw)], Vw or equiv-
alently ||WC/||, < 1, where Wy = w,].

Thus, to satisfy both design requirements, it is sufficient (but not necessary)
W15 <1
e || <t 8]

(b) The design specifications reduce to the requirement that the transfer matrix

from r to z = [zf zI]7 in the following diagram has H.,-norm less than 1.

t = b=
Wi(s) Wo(s)

y 3 7

f__(l> e K(s) ——]G(s) y

The corresponding generalised regulator formulation is to find an internally
stabilising K such that | F (P, K)||_, < 1:

that

Y

A\ 4

Z — T
. P(s) |, u
e ™ «
K (s)
W, | -W1G
P = P Py _ 0 W,G
Py Py T -G [8]

(c) Let the input to A be e while the output from A be 6. Then ¢ = —C§
where C' = (I + GK)™'GK is the complementary sensitivity which is stable.
Using the small gain theorem, closed-loop stability is assured provided that
|A(jw)C(Jw)|| < 1,Vw. Since K(s) achieves the design specifications of Part
(a), |A(GW)|| < |wit(jw)|, Yw gives the maximal stability radius. [9]



