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Information for Candidates

Some useful transforms

fr fZ(2) ()
i = 0F 1 T
1k z 1+ T
z—1 ¥
" Tz 1++4T
k (2_1)2 ,),2
o z 1++4T
z— y—a
— a—1
where &@ = N
ka® za QA+yD)(1+aT)
(z—a)? T(y—a)?
F(t) FE(s)
eat 1
S—«

Some notation
* denotes transposition of a vector or matrix

q is the forward shift operator

£Z(2), fP(y), f¥(jw), f¥ (w) denote the Z-, Delta-, discrete-time
Fourier and W -transforms, respectively, of { fx}

fZ(s) denotes the Laplace transform of f(2)

ty = KT.
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The Routh Test

Every root of agw™ + a;w™™' + ... + a, = 0 has strictly negative real part iff all n + 1 entries in

the first column of the following Routh-table are non-zero and have the same sign:

1 Qg s

2: a, as

3 a1872—0a003 1a4—000as
’ ai al

n+1: ...

The Jury Test

Every root of d(z) a Q2"+ o, 127

d(1) >0,
and
>0 ifniseven
d(=1) { <0 ifnisodd
and

lag| < @, o] > [bn-1l, |co| > |

Q4

as
2186 —000a7
ax

+ ag = 0 has modulus strictly less than one iff

cral, .-,

where the b;, c; etc., are determined from the following Jury-table

1 Qg a;

2 a, a, 1

3 b b,
where b, = qpa; — @,a,_;

4 bn1 bns

2n—3: ...

Here, for all 1,

ifa, >0

@ if o, < 0.

@
= o
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1.

The Questions

(a) Consider the system of Figure 1.1, where G*(s) = (?_21—3(43-3_—2).

Using a step-response and a partial fraction expansion, determine the pulse

Z-transfer function from u?(z) to yZ(z) when the sample period is T'. [6]
(b) Show that Z{kfi} = — z:L f%(z). 2]

(¢) Assume that each pole of the transforms fZ(z) and g7 (z) has modulus

smaller than one.

(i) Adapt the proof of the Z-transform version of Parseval's theorem to
show that

5 fus = 25 o, 12 () P e (6]

where I'; denotes the disc of unit radius in the complex plane that is

centred on the origin. You may use without proof the fact that

fi = zim frlfz(z)zk‘ldz.

(i) For {fi} = {1,2,0, 0,0, ...}, use residues to evaluate
= I 12(2) F2(z 1)

Check your result by carrying out a discrete-time summation. [6]

u(?) y(t)
u—> ZOH —¥ G'(s) —~——>n

Figure 1.1
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Consider the system of Figure 2.1 where the continuous-time system S, is modelled by
#(t) = Az(t) + Bu(t), y(t) = c'a(?) ®)
and the sample period is 7.

(@) () Anapproximation to z(t+h) is given by
z(t+h) =~ z(t) + hx(t).
Use this method of approximation to determine an approximation to x(t;ﬁ%) and
use it again to determine the matrices Z, Bofan approximation 1 to z(tx + 7T)

of the form

zp1 = Azg + Bug, yp = 'z )] [6]

(ii) State the connection between the eigenvalues of A of part (i) and BIBO-stability
of ($). [1]

(iii) Assuming that A of (£) has distinct eigenvalues, determine a formula for A4 of
part (i) in terms of the spectral form for A and hence determine an inequality for
each eigenvalue of A that guarantees BIBO-stability of ($). [4]

(b) Consider the discrete-time model
T = Azg + Buy, y = 'z
of (£) that satisfies z, = z(t;) forall k > 0.
Derive from A and B the approximation
Tra1 = (I + A%)(I — ATy g+ T(I - ALY Buy, yp = 'z [3]

(c) Suppose the pulse Z-transfer function, from uZ(z) to y#(2), for the system
of Figure 2.1 is G%(z) = 5= .

Use residues to determine the corresponding pulse response sequence. [6]
u(t) y()
u,—>» ZOH > S, —— Y,
Figure 2.1
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Consider the feedback system of Figure 3.1 where K > 0, the sample period is T
and G (z) is the pulse Z-transfer function, from u?(z) to yZ(z), of the system
of Figure 3.2,

(a) Show that y*(jw) = (M> G (jw)uF (wT). [6]

Jjw
(b) Suppose G?(z) = j—:g%.

(1) Determine the break-points of the root-locus for the closed-loop system

of Figure 3.1 and hence draw accurately the root-locus for that system. [6]

(11) Use the root-locus of part (i) to determine the set of values of the gain K
for which the closed-loop sysem is BIBO-stable. [4]

(i11) Verify your set of part (ii) using the Jury test. [4]

7, KGZ(Z) >

Figure 3.1

t
u, —» ZOH EUR G'(s) —"— »

Figure 3.2
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4. (a) Prove thatif z = %f—g then |z| < 1iff Re(w) < 0. Discuss very briefly

(in, say, one or two sentences) the significance of this result. [5]

(b) Consider the system of Figure 4.1, for which K > 0 and

7 . (2+10)
G*(z) = (z—1)(z+0.3) "
Let K .. be the largest value of K such that the closed-loop system
is BIBO-stable for all K € [0. K paz).

A plot of GZ(e7%) for Q € (0,27) is shown in Figure 4.2.

Draw the relevant discrete-time Nyquist path, sketch the corresponding

discrete-time Nyquist locus and estimate K,,,, from your locus. Give

enough explanation to make clear how you have obtained your locus and

determined K., from it. ' [7]

(¢) Discuss the use of full-state observers in the feedback control of linear
discrete-time single-input single-output systems described by

/
Tpy1 = Az + bug, yp = c'zp.

Your discussion should include: the observer equation, the associated

eigenvalues and how to assign them using a standard eigenvalue

assignment algorithm for choosing feedback gains, and properties of the

observer that are relevant to feedback control. [8]

KG*(2)

Figure 4.1 Figure 4.2
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5. Consider the system of Figure 5.1 below, where the controller C'Z () and plant PZ(z) are

specified by
[C7] Thyr = ATy, + bey, uy = &%,
[P?) Tht1 = Azp, + buy, yp = 'z

(1) Suppose
(L 075 - _[17] _
i[5 [ oo s,
Determine C#(z) and the decoupling zero(s). [6]

(ii) For a (different) controller CZ (2) = é—z__l%%, determine a control

canonical realisation and a series realisation. [7]

(1ii) Let 7, = [;k J .Determine A, D, Z of a model of the forward path having the form
k

Tro1 = ATy + bep, ypo= ¢ %k
Suppose the eigenvalues of A are Ai, 1=1,2, ..., n, and those of 4 are i,
i=1,2, ..., @ Prove, using the basic definition of an eigenvector, that the
eigenvalues of A and A are also eigenvalues of A,
Discuss very briefly the significance of this when an unstable pole of PZ(z)

is cancelled by a zero of C'%(z). [7]

() =P (o)

Figure 5.1
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6.

Consider the scalar-input scalar-output discrete-time system

Try1 = Az + bug; yp, = ¢'zp

where z;, € R".

(a) Let M be the system's controllability matrix.
Use M to determine a sequence of controls that demonstrates that the
system is reachable if M is non-singular. [4]

(b) Suppose n = 2and

(@)

(i)

o[ L)oo

The pulseZ-transfer function from u?(z) to yZ(z) is 4/(2* + 16).
Show, using root-locus analysis, that the system cannot be stabilized
by the control law u; = r, — Ky, for any positive gain K. [3]

Now consider control of the form u, = r, — f'xzy, for f € R2.
Let p’ be the bottom row of the inverse of the controllability matrix A
and let

p/ An—l
Use V' to determine the control canonical form for the system
and use it to choose f to stabilize the system by locating the
closed-loop poles at the origin. [11]

Verify that your closed-loop system has the desired eigenvalues. [2]
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-

(At J\UkaJ - Jo Lutbhonr 2 ¢o 2

(a)Pulse Z-transfer function
= EAZ{L7UGH(s)/9) (1)} = 2L (itnty) ()}
= EUZ{LE + B + 5) ()
(where a = (2—4s)(s—1)(s—2) 7Y _, = 1, b= (2—4s)s7 (s—2)7|,_, =2
c= (2—4s)s7 1 (s—1)7H _, = -3)
= 07007 + B - 2500} = EEH2{(1 4 26 = 3¢y p)
_ 2~1 Z{1+26+Tk _ 3e +2Tk} _ (%U{ﬁ + 2z—f31T _ 3z_ezf2T}

z

:1+2 Ze‘-T_3 Ze:éT [6]

(b) —z f7(z) = - zéki;osz-’f - - Iifk(—k)z—’f = Skt = Z(kf3G). D)

(¢) (i) Now fj = 5—715 fl“l f%(z)2F'dz because all the poles of fZ(z) are within I';.
Hence kagk {%]f fZ k= 1d2}gk 2m§ fZ Z gkz’“ 14,
= W‘f 70 (EOW )2z = o § FA (=) g7 ()= e (6]

(i) For {f} = {1,2,0, 0,0, ...}, we have f2(z)=14+21= é—fg—)so
fA(zh) =1+2(2)7
Hence z—mf fZ(z7Y) f2(2)2"
= 2_7T]§ {1+2Z} Z+2 dZ
— 2m§ {z+2+22 —+—4z}d

— § {22 +52+2
27r] i

= residue of{z—z—@ﬁ} atz =0
{2z(z+50z+2( 0)2} » = %{222 + 5z + 2} 0 = {4z + 5}, =5

According to Parseval's theorem,
o0
o § F) Az e = > fE=1+2=5

confirming the above calculation using a residue. [6]
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. (a) Using z(t+h) ~ z(t) + hx(t), we obtain
z(te + ) ~ a(te) + (D)[Ax(ty) + Bu(te)] = (I + AD)z(ty) + (L) Bu(ty)
SO
2ty +T) ~ (I + AD)z(t:+ D) + (L) Bu(ti+D)

~ (I+ ADIT + AD)a(t) + (3)But)] + () Bu(t + T)

= (I + AP + AD)x(tx) + (5)Burl + (£) B

(since u(ty) = u(ty + L) = wi)
= (I + AL z(t) + [T+ ADT + 1By,
giving rise to the approximation
Te+1 = Ay + Buy

where A = (I + AL)2, B = [(I+AD)T + LB, [6]

(1) the system is BIBO-stable if the eigenvalues of A each have modulus smaller than

one. [1]

(ii) Since A has distinct eigenvalues, it has the spectral form A = VAV L. Therefore
Acanbe writtenas A = (I + AL)2 = (I + VAVIDY? = V(I + ALYV -1]2
= V(I 4+ AL)?V =1 5o the eigenvalues of A are (1 + \; T)2. Hence the condition
for BIBO-stability is that |1 + A, | < 1, Vi. [4]

(i) Zp+1 = exp(AT)zy + [] exp(AT)d7TBuy ~ eAT/2(e=4T/2)" g 4 TeAT/2Bu,
~ eAT/Z(e—AT/2)~1xk + T[e—AT/Z]—lBuk
~ (I + A%)(I - A%)mlxk + T(I——A%)ﬁlBuk.
Hence we have the approximation
zh1 = (I + ALD)Y(I - AD) o + T(I-AD) ' Buy, yy, = 'z, 3]

(b) The pulse response sequence is {hy} = Z7{G?(2)} = Zz {1z oy
ho= Lt -y

Z

|z] = o0
Fork > 0:
hyx = {residue of (2—2——+2)(z D@z = +2} + {residue of ¢ ) )( z+2)@z = -2}
= E|  FEEE) = 025x 28 4075 x (—z)k—l. [6]
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(a)

Now u(t) = 3" ay(t)uy where oy (t) = 1for ¢ € [ty, txsq) and ai(t) = 0 for
k=0
t & [tr tes1). And af(s) = (e —e~tn) /g = (1 — e~*T)e~s% /5. Hence

uL(s) = Zaé(s)uk — i(l _ e"ST)e_St“uk/S =[(1 - e_ST)/s] io:e_”qt"uk
k=0 k=0 k=0

= [(1 = e™T)/8] = (T )ue = [(1 - =T /5] u?(&T).
k=0

~ Hence yL(s) = GL(s)u(s) = [(1 - e T)/s1G* (s)u? (e5T) so

(b) (©

(i)

(i) The pulse Z-transfer function of the closed-loop system is TRGT) =

v (w) = (1 = e ™7/ (w) IGE (jw)u? (e5T)

= (1= e 7)/(ju)G* (jw)uF (WT). [6]
The break points ¢, are defined by 7 io.s = al_,, + ﬁ,

i.e. by oy(0p — 2) = (03 + 0.5) (05 — 2) + a3(0y, + 0.5),
ie. byoj — 20y =0} ~ 1.50;, — 1+ 02+ 0.50,

ie.byoy +0, -1=0,iebyo, = 1(-1++/5) = —1.618,0.618.
Hence the root-locus is as follows:

IM@

X

[6]
Consequently the range of values of K for which the closed-loop system is BIBO-stable is
(I(mins I{maz) Where
[\’mm = - I/GZ(Z]) = - I/GZ(1> = — 1/( *:':045 )’ =1 =~ (0.6666
[\’ma‘r = - 1/GZ<ZU) = - 1/GZ<O+9) = 1/(;(;;2)

DD

2
ot

K%

1+K G200

which has the denominator d(z) = z(z — 2) + K(z + 0.5) = 22 + (K — 2)z + 0.5K.
Nowd(l) =1+ K -2+ 05K =15K — 1> Qiff K > 1/1.5ie iff K > 2/3

and

d(-1)=1-K+2+ 05K =3—-05K > 0iff K < 6.

The first row of the Jury table (the only relevant row in this second-order case) is
05K K-2 1

so there is the extra condition that |0.5K| < li.e. K < 2.

Hence the closed-loop system is BIBO-stable iff K > 2/3, K < min{6,2} =2

which is consistent with the values obtained from the root-locus.

KG?%(z)
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1+ (w+w*)+w* m)
- (wtw*)+w* w)

4. (a) Forz = H“ we have that [z]? = [2*z| = ’(H“)

%%%% < 1iff Re(w) < 0. This is useful because it provides a connection

between the BIBO-stability condition for poles for a discrete-time system (|pole|<1) and for
the poles of a continuous-time system (Re(pole) < 0). [5]

(b) Since there is an open-loop pole at z = 1, the
relevant Nyquist path is as shown

M

30

Q-

Ne)ﬁws\/
locuy

4 2 0
Nyquisk  patl, -40

50 60

For z in the path in the circle centred on z = 1 with radius ¢,
70N 2 _ By . (z+10) (1+2e”+10)
Go(2) =G (1+ee?) = (z~1)(2+03) 7 (1+ee®—1)(1+£e#+0.3)

b -8 :
= (Eeﬁ("l)l(;_gis)eﬂ’) ~ 1%?35] ~ 8'466_]9/5'
Hence we obtain parts a-a’ and ¢’-c of the Nyquist locus above.
The part a’-b-c¢’ follows from Figure 4.2.
Since G#(z) — Oas z — oo, the parts d-e-f and f-g are at the origin, as shown.
Since there are no open-loop poles in the region E U L, the closed-loop system is BIBO-

stable if —% < (approx.) =8, i.e. if K < 0.125. [7]

(c) The observer is Ty41 = (A — 1) T + lyx + bug : Tp = Tp. Forit: gy = (A4 — )y
where ¢, = x; — 7. Therefore €, — 0, so that (slightly abusing notation) Zj — zj, if
[Ai(A = lc")| < 1, Vi. Since the eigenvalues of A — Ic’ are those of (4 — I¢/) = A’ — cl’, the
eigenvalues of A — I¢’ can be assigned arbitrarily by choosing [ using a standard algorithm
for assigning the eigenvalues of A’ — ¢!’ provided (4’, ¢) is a controllable pair.

The tranfer functions for the closed loop systems when u;, = f'Zy and when uy = f'z, are
the same.The eigemvalues of the closed-loop system using feedback from Zj, instead of
consists of the eigenvalues of A — bf’ together with those of A — I¢’. Hence the design of
the feedback gain vector f can be decoupled from the design of |. (8]
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s 0 c=eer-A—no(f; o[ 0P

(i)

(iif)

o [z+1 —0‘75}
z—1 0.75 1 1 z—1 1
e | I B R =
_ 2+1.75 2.5:-125 _ —0.5 _ _25
= [1-15]72 025[ 9 s }— 055 = 29086108 — (+05)"
The decoupling zero is the cancelled eigenvalue and so is 0.5. [6]
3 “1_p, -2
u?(z) = ( Je?(2) = (z i) ;:(_J g)ez(z) = rase’ (2) = iemmasre’ (2)
= (1+ 27! — 627 2)w? (2) where w? (2) = 5= ¢ (2).

Hence (1 — 0.52'1 —0.5272w? (z) = e?(2) so, taking Z 1,
Wy — 0.5wk_1 - O.ka_g = €k

re. wi = e+ 0.5wi1 + 0.5wg_s.

Similarly, since u?(z) = (1 + 27! — 627 2)w?(2),

Up = W + U}k_‘ — Bwg_o.

Hence the canonical realisation is:

Uk = Wk + Wi — 6wi_o, W = € + 0.5wg_1 + 0.5wg_o.

z—2 z+3 1-2z72
(z—2) (+))6Z()_( )

For a series realisation, write u% (z) = a?(z) where

. (z=1) (2405 — (1-z7YH

a?(z) = <514:(')?5'2_3)eZ(z).Hence (1 -z Hu?(z) = (1 — 227?)a?(z) and
(140.5z271)a? (z) = (1 + 3271)e?(2). Therefore the series realisation is:
Uy = Ak — 2Qk-2 + Ug—1, A = € + 3ex—1 — 0.5a,_1. [7]
N Thi1 Axy + buy Az + bT'Ty, A be Ty 0
Tk+1 = | = == | 7 = 5= | T = - |+ 5] ek

Tk+1 ATy, + bey ATy + bey, 0 A Tk b

—_— ——
A b

Let v be an eigenvector of A associated with the eigenvalue A of A and let T = [/ 0]'.
~ A b o Av Av v
T T = —_— = = = = \U ]
hen AT [ 0 A } [O} l 0 [ 0 } A [O AT so each eigenvalue of A
is an eigenvalue of A.
Now suppose w is an eigenvector of A corresponding to the eigenvalue A of ZI, which
is automatically an eigevalue of A. Then

- A0 0 ~
A’ 0 = 0 = | = 0 = A\ 0 so A is an eigenvalue of A’
w : b A w A w Aw w

and hence is an eigenvalue of A since the eigenvalues of A’ are those of A.
Consequently the eigenvalues of A and A are eigenvalues of A.

The cancellation mentioned causes the forward path's transfer function to have no
unstable poles even though non-zero initial conditions might cause y; — oo. The
unstable eigevalue remains even if the feedback loop is closed, which shows the danger
of choosing C4(z) to cancel an unstable plant pole. (71
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6. (a) ¥, = Axg + bug, T2 = A(Axo + bug) + buy = A’zo + Abuy + bu, ete., 50O
Tn = Anzy + [b Ab ... AV1b]u = A"z + Mu where u = [Up_; Un—2 ... u0)"
If M is non-singular then z, can be made equal to any given X by choosing
u = M7y — A™z¢] so there is a control sequence that transfers any initial

condition to any given y in finite time, so the system 1s reachable. (4]
{oevs
. . <ol 9oy
(b) (1) The poles of the transfer function are at + 4j so J( _
the root-locus is as shown. 4y
1=
o)

6

The root-locus does not enter the disk with radius one that'is centered on the
origin so the system cannot be stabilised for any positive value of the gain K. [3]

1 2

2 =2 0.5 -0.5
-1 2

]. Then M~! = [1 1J/(2+2): [0.25 0.25

(i) M = [b Ab] = [
0.25 0.25]
SO

sop’ =[0.25 0.25]and consequently V = { 0.5 —0.5

vl = [‘0'5 '0'25]/(~0.125—0.125)= [2 1 }

-0.5  0.25 2 -1
Then
025 025 |{-3 -5||2 1
— -1 _
Co= VAV = {0.5 ——0.5}[ 5 3 }{2 —1}
1025 025 )1-16 2| _| 0 1
105 —05|] 16 2| |-16 0
which has the desired companion form with « = [ — 16  0.]. The corresponding B-

. 025 02511 0
matr1x1sV/\,b~{o'5 _0,5}[—1}—[1}

Hence the transformed system has the controllable pair ( _(i 6 0} , [ 1 } ).
The desired characteristic polynomial is (A — 0)(A—0) = X* = 0.A — 0.

Hence the feedback vector required is f = V/( _016] - [8 )
025 0.5 ][-16 —4 ' '
-[om )= 1) (i
. , [-3 -5] 1
Check of closed-loop eigenvalues: A — bf’ = A e [—4 —4]

_[-3 -5 —4 —4] 1 1]
“[5 3}— 4 4 “[1 -1
det(\ — [1 j ]) = det([)\_—ll )\11}=(/\—1)(/\+1)+1 =X=AN-0)(-0)

so the closed-loop eigenvalues are indeed 0 and 0, as required. [2]
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