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Special instructions for invigilators:

Information for candidates:

System:

Quadratic cost function:

Riccati equation:

Optimal control law:

Minimum cost:

Return difference inequality for scalar u:

Minimum principle:

Linear Optimal Control

None

#(t) = Ax(t) + Bul(t), 2(0) = zo.
J(z0,u) = /0 ” [2(t) Qe (t) + u(t) Ru(t)] dt,
Q=Q'">0, R=R >0.
A'P+PA+Q~-PBR-B'P=0.

u(t) = ~R71B'Px(t) = ~Kx(1).

24 Pao.

1+ K(jwl — A)~'B| > 1,

= f(z,u),uel

Jeo = [ Y Lia(t), u(t))dt,
H(z,u, X, A) = ML(z,u) + M f(z,u),

ki
(1’* u* 7>‘6 a)‘*)

H(z*,w, A}, \*) > H(z*,u*, A\, "), Vw el

H(a*,u*, Ay, X¥) = k.
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1. Consider the linear electric network in Figure 1, with R > 0, C > 0 and L > 0.
Denote by u the driving voltage, by z; the voltage across the capacitor C, by z3 the
current through the inductor L, and by y the current through the voltage source.

" (P u CP R

Figﬁre 1. Figure 2.

(a) Using Kirchhoff’s laws, or otherwise, express the dynamics of the circuit in the
standard state-space form, regarding u as the input and y as the output. [4]

(b) Study the controllability /stabilizability of the dynamical system determined in part
(a). 4]

(¢) Study the observability /detectability of the dynamical system determined in part

(a). [4]
(d) Compute the transfer function from the input « to the output y. [4]

(e) Show that if R?C = L then the transfer functions of the circuits in Figure 1 and
Figure 2 are the same. [4]
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2. The linearized model of an orbiting satellite about a circular orbit of radius rg > 0
and angular velocity wg # 0 is described by the equations

0 1 0 0 0 O

- | 3w 0 0 2row? 1 0

= Az + Bu = 0 0 0 1 T+ 0 0 U
0 —2wy/ro 0 O 0 1/ro

100 0
y_cx‘[o 01 o}x'

The output components are variations in radius and angle of the orbit and the input
components are radial and tangential forces.

(a) Show that the system is controllable. (6]

(b) Design a state feedback control law

ki kiz ki3 ki gu O
=Kz +Gv= + v
“ v Y [ ko1 koo koz kos v 0 g2

such that

(b1) the matrix A+ BK has all eigenvalues equal to —1 and it is block diagonal, i.e.

[ A0
avn=| "

with F; € IR?*?, (8]
(b2) the closed-loop system has unity DC gain, i.e.

_C(A+ BK)"'BG = [ (1) (1) ] .
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3. A linear system is described by the differential equations

1 = azi+tu
To = u
y = z1+22

where u € IR is the control input, y is the output variable and « is a constant
parameter.

(a) Study the controllability property of the system as a function of «. 2]
(b) Study the observability property of the system as a function of a. (2]

(¢) Assume a # 0. Design an output feedback controller applying the separation princi-
ple. In particular, select the state feedback gain K such that the matrix A— BK has
two eigenvalues equal to —1 and the output injection gain L such that the matrix
A — LC has two eigenvalues equal to —3. Note that K and L will depend on a. [8]

(d) Compute

lim || K| lim || L
a0 a—0
and explain your results using the conclusions of parts (a) and (b). 2]

(e) Consider the state feedback control law designd in part (c). Verify if, for some a,
this control law is optimal with respect to a cost of the form

/OO [ty Qu(t) + ()] dt,
J0

with Q > 0. [6]
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4. Consider the system

r +

o -2
T = 12 o

1
I

with initial state zg, with the quadratic cost to be minimised

where

with =

(a)

(b)

(c)

oo
J(IBO,U) = /0 L(xlaanuvt)dt

L(zy,z9,u,t) = 2 (z:{‘ + qux% + ru2) ,
= [z1,22)', @« > 0, g2o > 0 and 7 > 0.

Transform this optimal control problem into a standard problem, i.e. a problem in
which L(z,,z2,u,t) is replaced by a function of z,, zo and u only. [4]

Verify that, for any o > 0, the conditions for the existence and uniqueness of an
optimal feedback control law are met. (4]

Write the ARE associated with the transformed optimal control problem defined in
part (a). Find ¢22 > 0 and r > 0 such that the ARE is satisfied by a matrix of the

form
1 0
P = :
[ 0 pa }

Make sure that the resulting scalar r is positive and the resulting @ and P are
positive definite for all a € [0, @). Determine the largest possible such @. (6]

Suppose that gz,  and & are as required in part (c). Compute the optimal control
law and the optimal closed-loop system for the original optimal control problem.
Verify that the eigenvalues of the optimal closed-loop system have real part less
than —a for all @ € [0,@). 6]
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5. Consider the system

1 = u
To = —Ig+u

with u € [—1,1], initial state z(0) = [z10,Z20]7, final state z(T) = [0,0]T and the
cost (to be minimized)

(a)
(b)

()

(d)

fII(), / 1 dt.

Write the necessary conditions of optimality in the case of normal extremals.  [4]

Compute the optimal control as a function of the costate A = [Ay, A2]T and show
that |u*(¢)| = 1 for all ¢ such that Aj(t) + A5(t) # 0. 2]

Use the differential equations of the costate to show that the optimal control law
has at most one switch, i.e. the optimal control law is one of the following:

e u*(t)=1for all t € [0,T};

)
o u*(t) = —1forallt €[0,T);
o u*(t)=1for all t € [0,7) and u*(t) = —1 for all t € (£, T}], with 0 <t < T
o u*(t) = —1forallt € [0,7) and u*(t) = 1 for all t € (,T}], with 0 <t < T.
(Note: the solution of the differential equation & = az + b, with constant a # 0 and
constant b and initial condition z, is z(¢) = e*(zo + b/a) ~ b/a.) 6]
Integrate the state equation with u = 1. [2]

Determine the set of initial conditions for which the control u(t) = 1 for all ¢ € [0, T)
is optimal. For such initial conditions compute the time to reach the origin. [6]
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6. Consider the system

T=z+u

with z(0) = zo, and the problem of finding a bounded control law |u(t)] < 1 that
minimizes the cost

(a)

z(1)?
J (mo, u) = ( ) .
2
Write the necessary conditions of optimality for normal extremals and the boundary
condition for the costate A(t) at t = 1. (6]
Write the optimal control as a function of the optimal costate A\*(t). (2]

Assume there is an optimal control which yields the global minimum of J(zg,u),
i.e. J(xo,u) = 0. Show that such an optimal control cannot be computed using the
necessary conditions derived in part (a). (4]

Assume |zp| < 1 — % and zp # 0. Show that there exists a control u(t) such that
x(t) =0 for all ¢ € [t,1], for some 0 < £ < 1. (Hint: try

—sign(zo) for t € [0, 1]
ult) = ] (*)
0 for t € (¢,1]

for some 0 < ¢ < 1.) (Note: the solution of the differential equation = = ax + b, with
constant a # 0 and constant b and initial condition z, is x(t) = e (xg+b/a) —b/a.)
(Hint: you may use the inequality

. sign(zg) <e
sign(zg) — zo
for all |zo| < 1 — 1/e.) ' [4]

Assume |zo| < 1 — 1 and z(0) # 0. Using the result in part (c) discuss the optimality
of the control law (x) and the uniqueness of the optimal control law. [4]
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