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Information for candidates:

Hamilton Jacobi theory:

z(t) = f(t,z,u), 2(0) = zo

T
J{zg,u) = /T L(t,z,u)dt + m(z(T)),

v = min [L(t’x,u) + ov

ot~ u 5y (o)), Ve T) =m(z)

Linear Quadratic Regulator:

x(t) = Az(t) + Bu(t), z(0) = o

J(zg,u) = /T [z(t) Qz(t) + u(t)' Ru(t)] dt + z(T)' Mx(T)
Q:Q’ZO,TR:R’>0, M=M >0
—P=AP+PA+Q—-PBR'B'P,P(T)=M

u(t) = —R™1B'Pz(t) = —Kz(t).
The matrices A, B, @, R, P and K may depend upon ¢.

Minimum principle:

T = flz,u),uel

tf
(2o, u) = /0 Liz(t), u(t))dt,
H(z,u, o, \) = ML(z,u) + XN f(z,u),

/

oH

M= 2=
oz

bl
(&% ,u* A8 ,A%)

H(z*,w,\§, \*) > H(z", u*, A5, \"), Yw €U,

H(z*, u*, 5, \) =k for fixed t;
H(x*,u*, 25, \*) =0 for free tf

Linear Optimal Control

Page 1 of 7



L. Consider the system with one-dimensional state
&= f(z)+u
with initial state xg > 0 and with the cost to be minimised
geo o)
J(zg,u) = / L{z,u)dt
0
where
L(z,u) = (q(2))* +u®.

(a) Write the Hamilton-Jacobi equation associated with this optimal control prob-
lem.
(Hint: use the fact that the value function V(z,t) is independent of t).  [2]

(b) Solve the Hamilton-Jacobi equation derived in part (a).
(Hint: note that the Hamilton-Jacobi equation is quadratic in %—‘;—. Hence you

can solve for %—‘;, and then integrate formally in x.) 8]
(¢) Assume f(r) = —q¢(z) and ¢(z) = z+z>. Compute a positive definite solution
of the Hamilton-Jacobi equation which is also such that V(0) = 0. 4]

(d) For f(z) and ¢(z) as in part (c), compute the optimal control and the optimal
closed-loop system. 2]

(e) Show that x = 0 is the only equilibrium of the optimal closed-loop system.
Discuss the stability of this equilibrium. (Hint: study the signum of & as a
function of z.) 4]
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2. Consider the simplified model of a ship described by the equation

MO +db+ ca=w
a+a=u

where ¢ denotes the heading angle error (the angle between the ship’s heading and
the desired heading), o denotes the rudder angle, w denotes a disturbance due to
wind, and w is the control input. M and ¢ are positive parameters, and d is a
non-negative parameter.

(a) Write the equation of the system, with state (, 6, @), input (w, ) and output
¢ in standard state space form. [4]

(b) Cousider the system determined in part (a) with w = 0. Verify that the system
is controllable. 4]

(¢) Consider the system determined in part (a). Verify that the system is observ-
able. 4]

(d) Consider the system determined in part (a) with w = 0. Assume M = 1,
¢=1and d = 0. Design an output feedback controller applying the separation
principle. In particular, select the state feedback gain K such that the matrix
A — BK has three eigenvalues equal to —1 and the output injection gain L
such that the matrix A — LC has three eigenvalues equal to —3. 8]
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3. Consider the system

T = Ax+ Bu = {0 1}[171 +

0 0 o)

0 U
1
with initial state o, with the quadratic cost to be minimised
o 2, .2
Jaou) = [T (@) + Bra)? + wP(0)dt
with 3 € IR and 3 # 0.

(a) Verify that the (sufficient) conditions for the existence and uniqueness of an
optimal feedback control law are met. 2]

(b) Write the Riccati equation associated with this optimal control problem and
find all its solutions. [4]

(¢) Find the positive definite solution of the Riccati equation determined in part

(b). (8]
(d) Compute the optimal control law and the optimal closed-loop system. 2]

(¢) Compute the eigenvalues of the optimal closed loop system determined in part
(d). Show that for 0 < |8] < v/2 the eigenvalues are complex conjugate, for
13] = V2 the eigenvalues are real and coincide, and for |B] > /2 the eigenvalues
are real. Show, moreover, that as [8| — oo one eigenvalues approaches zero
and the other approaches —oo. [4]
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4. Consider the system

I = I
Ty = —x1+u
y = ar]+ xo.

Consider a reference signal w(t) = [1,0]’ and consider the problem of designing a
linear static error feedback control law such that the state of the closed-loop system
asymptotically tracks the signal w.

(a) Show that there is no linear static error feedback control law solving the con-
sidered problem. 2]

(b) Consider the system with input y

£=X+y,

and set u = £ + v, where v is a new input signal. Write state space equations
for the extended system with state z, = [z1, 7, €]’ and input v. [4]

(¢) Show that it is possible to select the parameter A of the extended system,
determined in part (b), in a way that makes the following problem solvable:
design a linear static error feedback control law such that the state of the
extended closed-loop system asymptotically tracks a signal of the form We =

[1.0,&])', with € constant. 6

—_

(d) Let A be as determined in part (d). Design a control law u = — Kz, + Kw,
which solves the asymptotic tracking problem and which is such that the eigen-
values of the closed-loop extended system are all equal to —1. Show that there
is such a K only if a = 1. [4]

(¢) Let A be as determined in part (c). By computing the rank of the controllability
matrix of the extended system explain the results obtained in part (d). 4]
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5. Consider the system
T = Ty
Ty = —x1+u
with u(t) € [0,1], initial state (0) = [z10,z20)’, free final state z(T), and the
problem of maximizing x1(7’), at some fixed time 7' > 0.

(a) Show that the considered maximization problem can be recast as the problem
of minimizing

J= /OT ~za(t)dt.

[4]
(b) Write the necessary conditions of optimality for normal extremals. [4]
(¢) Write the optimal control as a function of the optimal costate. 2]

(d) Consider the differential equations of the costate. Assume A (T)=X5(T)=0
and A{(t) = Asint + Bcost + C. Determine A\j(t) and A}(t). (6]

(e) Write the optimal control as a function of time. Assume T = 10. Compute
how many times the optimal control switches. (4]
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t. Consider the system
I = 1
.’172 = u

with initial state z(0) = [z10, 20}, final state z(T) = [0,0]’, and the problem of
minimizing the cost

J= /OT w2 (t)dt

with fixed final time T > 0.

(a) Write the necessary conditions of optimality for normal extremals.

(Hint: use the condition %—IJ— = 0 to compute the optimal control.) 6]
(b) Write the optimal control as a function of the optimal costate. [2]

(¢) Integrate the differential equations of the costate with initial conditions
A (0) = [Mo, Azo). 2]

(d) Determine the optimal control as a function of time and of A*(0). 2]

(e) Integrate the state equations with the optimal control, and use the boundary
condition z(T) = 0 to determine A}y and A3, as a function of T, z1 and o
Write the optimal control as a function of T', z;¢ and Z29. Determine the initial
condition 19 and zgp for which the corresponding optimal control is constant
for all t. 8]

Linear Optimal Control Page 7 of 7



-
-\
m
N

Linear Optimal Control - Model answers 2005

Question 1

(a) The Hamilton-Jacobi equation is (note that %—‘t/ =0)

0 = min | (q())? + w2+ (5 (2) 4 ).

Performing the minimization yields the optimal control (as a function of z and aV),
namely

_1av

20z

*

and the Hamilton-Jacobi equation
8V oV
— 2_Z -

(h) Note that the Hamilton-Jacobi equation is quadratic in %% Hence,

3z =2 (10 U )

v = [“2 (10 = Ju@ry <q<§)>2) dt + ¢,

where ¢ is a constant,

vielding

(c) Setting f(x) = —g(x), and ¢(2) = z + 2%, and taking the — sign in the integral yields

CEQ CE4
Viz) =2(v2-1) (—2— + I) +c

Setting ¢ = 0 gives the desired positive definite solution.

{d)

The optimal control is
ut(z) = —(vV2 - 1) (ac + ac3)

and the optimal closed-loop system is

= f(z)+u*(z \/_x1+:13

I The equation # = 0 has only one solution, namely z = 0. Note now that & < 0 for
>0 and @ > 0 for z < 0, hence all trajectories approach the zero equilibrium.



Question 2

()

(h)

The description of the system in standard state space form is (set = = (6,6, )

0 1 0 0 ofr
i=|0 —d/M —¢/M |z+ | 1/M 0 {u}
0 0 ~1 0 1

y:[1 0 o]x.

The controllability matrix is

0 0 —e/M
C=10 —¢/M ¢/Md/M+1)
1 -1 1

and this has full rank for all positive ¢ and M. The system is controllable.

The observability matrix is

10 0
o=|0 1 0
0 —d/M —c/M

and this has full rank for all positive ¢ and M. The system is observable.

Let K = [k k2 k3] and note that

A—-BK = 0 0 -1
—kq —ko —1— k3

and that the characteristic polynomial of this matrix is s3 + (14 k3)s?+ (—ka)s+(—ky).
Hence the selection
ky=-—-1 ko = -3 k3 =2

is such that the eigenvalues of A — BK are equal to —1. Let L = (l1 I3 I3] and note
that

=i 1 0
A-LC=1| -3 0 -1 |,
=l 0 —1

and that the characteristic polynomial of this matrix is s3+(L+1y)s%+ (1 +l2)s+(la—13).
Hence the selection
lh =8 lo =19 I3 = -8

is such that the eigenvalues of A — LC are equal to —3. Finally, the controller is
§=(A-BK - LC)¢ + Ly, u = —~KE.



Question 3

(a)

(h)

(c)

The pair (A, B) is controllable, R =1> 0, Q = (1 B]'[1 8] > 0, and the pair (A4, [1 8])

is observable.

Set

P= {pn P12 } .
P12 P22

The ARE is
1-pi, P11 —piepa2 + B8 |
2 2 - O-
P11 —piepa2 + 8 2p12 —psy + B

We obtain pyy = +1. Selecting pjo = 1 yields poo = £/2 4 2 and py; = —f+/2 + 82,
Sclecting p1a = —1 yields pyy = +v/—2+ 52 and py; = -8 F -2+ 52

) For any 3, the only positive definite solution is

P V23 - 1
N 1 V2+ 52 |

The optimal control is

u=—[1, \/2+ 3]z

and the optimal closed-loop systems is

. 0 1
”3:[_1 _WJ””-

The eigenvalues of the optimal closed-loop system are

A= hé\/ﬁ2+2+%\/ﬁ2—2 AZ:—%\/B2+2—%\/@—2.

Clearly, for 3] < /2 these eigenvalues are complex conjugate, for |3| = v/2 they are
real and coincide (equal to —1), and for |8] > v/2 they are real. Finally, as |3] — oo,
we have Ay — 0 and ds» — —oc.



Question 4

{a)

(d)

To achieve asymptotic tracking with the stated class of feedback, it is necessary that
w=Aw = 0. In particular this is not the case for the given signal. In fact, if w(t) = [1,0]

then w(t) = [0,0] and
0 01 1
HEERIHE

The state space equations for the extended system are

0 1 0 0
Ze=| =1 0 1 |zt | 1 |v=Aexe + Bev
a 1 A 0

Note now that we = [1,0,&)’, w, = [0,0,0]" and
O —_
We — AgWe = 1—5_
—a— A¢
Hence, selecting € = 1 and A = —a we satisfy the condition for the existence of a static
error feedback achieving asymptotic tracking.

Let K = [k1, k2, k3] and note that

0 1 0
Ae =B K = | =1 -k —ky 1 k3
«Q 1 -«

The characteristic polynomial of the above matrix is
8% 4 (a + ka)s? + (ky + ks + crha)s + a(ky + ka),
and this should be equal to (s + 1), i.e. we have to solve the equations
a+ky =3 ki + ks +aky =3 a(ky + k3) = 1.

Note that these equations are not independent. From the first one we obtain ks = 3—a
Substituting in the second one we have k14 k3 =3 — a(3 — a) however, from the third
equation we obtain ky + k3 = % Therefore

1
— =3 - a3 - a).
- =3-a(3- )

Plotting the left-hand side and the right-hand side we see that this equation has only
one solution: o = 1. Hence, there is a K solving the stated problem problem only if
«v = 1, namely

K =[1—ks,2,k3).

The controllability matrix, for \ = —q, is
010
C=1]100
010
and this has rank 2. It is therefore not possible to assign arbitrarily the eigenvalues of
A — B:K. Note however, that for o = 1 the uncontrollable mode is s = —1, hence

there is a feedback gain assigning the desired eigenvalues.



Question 5

(a) From the &, equation we have

I (T) = xl(O) + /OT xz(t)dt,

hence, maximizing x,(T') is equivalent to maximizing

/OT zo(t)dt,

which is equivalent to minimizing
T
/ —XT9 (t)dt.
0

H=—x9+ \xzg + )\2(—I1 + u)

(h) Let

The necessary conditions of optimality, for normal extremals, are
I1 =19 To=—I1+u
AM=X Jg=1-X)
Au < Agw, Yw € [0,1].
(¢) The optimal control as a function of the costate is

0 ifA5(¢) > 0
LifA3(t) <0

u(t) =

[f A3(t) = 0 we do not have information on the optimal control.

/\
~

From A} = Asint+Bcost+C, we have \§ = A cost— Bsint. Setting A(T) = X\o(T) = 0
and solving for A, B and C yields

Al =1—cos(t—T) A5 =sin(t - T).
(¢} The optimal control as a function of time is
0ifsin(t—T) >0
w(t) =
lifsin(t —T) <0

Hence, for T' = 10 the optimal control switches 3 times.



Question 6
{a) Let
H=u®+ Mo + Au.
The necessary conditions of optimality, for normal extremals, are
L1 =Xy To=1u
M=0 Jy=-)
2u+ Ao = 0.

{(b) The optimal control as a function of the costate is
* 1 *
w = =205

{¢) From the necessary conditions in part (a) we obtain

A(t) = Mo
A3 (t) = A5p — Aot.
() The optimal control is
1
ut = _5( 50 — Aot).
{¢) Integrating the state equations with the optimal control we obtain

1

I 1ot?

1
r1(t) = @10 + 20t — ZA;OR +

* 1 * 1 *
Iz(t) = Tog — 5)\20t ‘I‘ ZAIOtQ'
Setting x1(T) = zo(T) = 0 and solving for A}, and A3, yields

l‘goT -+ 2.’]510 *

_ _42I20T + 3I10
T3 20 — - e

As a result, the optimal control is

3x10 + 22907 ZooT + 2x19
T2 + 6 T3 t.

ur(t) = -2
This is constant for all initial states such that
ool + 2219 = 0.

Finally, for such initial conditions the optimal control is u*(¢t) = —~
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