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Special sostrnetions for invigilators: MNone

Tuformation for candidates:

Systern: ©(t) = A(t) + Bu(t), (0) = 2.

[e.a] X i o
Quadratic cost function: J(zo,u) = / lz(t) Qz(t) + u(t) Ru(t)] dt,

0

Q=@ >0, R=R >0

Riccati equation: AP+ PA+Q—PBRIB'P=0.
Optimal control law: u(t) = —R7LB'Pz(t) = —Kx(t).
Minimum cost: wh Pxg.

Return difference inequality for scalar u: |1 + K (jwl — A)"'B| > 1,
Minimum principle: z = f(z,u),

I(z0,u) = /OOOL(:c(t),u(t))dt,
H(xz,u, A, A) = Mo L(z,u) + M f(z,u),




1 Coungider the linear electric networks in Figure 1, with Ky > 0, Ry > 0, Az > 0, €4 > 0
and € > 0. Let u; be the driving voltage, =1 be the voltage across the capacitor Cf,
and y; be the output voltage for the first civcuif. Let uy be the driving voltage, @3 be the

voltage across the capacitor (o, and yz be the output voltage for the second circuit.
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Figure 1.

(a) Using Kirchhoff’s laws, or otherwise, express the dynamics of both circuits in the
standard state-space form.

(b) Study the controliability and the observability of the two dynamical systems deter-
mined in (a).
onsider the interconnected network in Figure 2, obtained setting ug = y; via an ideal

op-amp and regarding u; and yp as input and output of the resulting network. Suppose
that no current flows into the input terminals of the op-amp.

(¢) Study the controllability and observability of the system as a function of the param-
eters Ry, Ry, Ry, C1 and Cb.

Figure 2.



9. The linearised model of a system composed of a tractor pulling a trailer along a straiglt
path is described by the equations

L’l == &9
To = U
,'7';3 = g Au

where u € IR is the input, y € IR is the output and A is a constant parameter.
(a) Discuss the properties of controllability and stabilisability as a function of A.
(b) Discuss the properties of observability and detectability.

(¢) Using the results established in part (b) design an observer to reconstruct asymp-

totically the state zq.

(d) Let .
qy == klfﬁl -+ 1132552,

and compute values for k; and ko such that the closed-loop system has eigenvalues
at {—1/2,-1/2,—-1}.

(¢) Using the results in parts (c) and (d) discuss why on-line measurements of fhe
variable z1 are sufficient to design a stabilizing (dynamic) output feedback controller.
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3.

Consider a system described by the following transfer function from u to y

1
I/V(S) = R
52
and the quadratic cost (to be minimised)
o0 \

seow)= [ (a9 + 2 ) o,

with ¢ > 0.

(a) Write the minimal state space realization of the system with the pair {4, B} in
controllable canonical form.

(b) Write the Algebraic Riccati Equation (ARE) associated with the optimal control
problem and verify that the hypotheses to solve the optimal control problem are
verified.

(c) Compute the solutions of the ARE derived in (b) and verify that one solution is
always positive for any g > 0.

(d) Compute the optimal control law as a function of ¢ and plot on the complex plane
the position of the eigenvalues of the closed-loop system as a function of g > 0.
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4. Consider the system

and the quadratic cost (to be minimised)

N

o . 5
J{zg,u) = ./u (fbf(i) 4 2a3 () + uf(t) + ug(t)) dt.

(a) Show that the system is controllable if and only if byby 5 0 and that the system is
stabilizable if and only if by # 0.

(b) Write the ARE associated with the considered optimal control problem.

(¢) Assame biby # 0. Find the positive definite solution P of the ARE derived m pavt
(b) as a function of by and by and compute the optimal state feedback control law
and the optimal closed loop system. (Hint: consider a diagonal P.)

(d) Let by = 1. Compute by such that the optimal closed loop system computed in part
(¢) has two coincident eigenvalues.
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5. Consider the system
& =~z + 2u.

(a) Write all stabilizing state feedback control laws u = —kz.

(b) Let u = —kz and compute all k such that the feedback law is stabilizing and optimal
in some sense. (Hint: use the return difference inequality.)

(¢} Counsider the cost function
O N
J(zo,u) == /{] (qa:z(t) + u?’(t)> dt.

Compute ¢ such that the control law u = —3z is optimal with respect to the consid-

ered guadratic cost.
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Consider the nonlinear system

- 2
o= T U

and the problem of finding a bounded control law |u(f)] < 1 that drives the
state of the system from z(0) = z; to z(ty) = 0 in minimum tirae.

(a) Compute explicitly all the initial states z(0) = z; that can be steered to z(ty) = 0
by the bounded control.

(b) Write the necessary conditions for optimality in the case of normal extremals.
(¢) White the optimal control as a function of the optimal co-state A*().

(d) Whrite the optimal control as a function of the optimal state *(t).
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