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1) Consider the problem of periodogram based spectral estimation.

a) Write down the expression for the periodogram based power spectrum es-
timate. In your own words explain the operation of the periodogram. How
is this estimate related to the estimate of the autocorrelation function? 4]

b) The ways to improve the properties of periodogram based spectrum esti-
mation include: averaging over a set of periodograms, applying window
functions to the data, and overlapping windowed data segments.

i) Explain how the averaging over a set of periodogams influences the
bias, variance and resolution of the periodogram. 2]

ii) Explain how applying different windows to the data influences the
bias, variance and resolution of the periodogram. 2]

iii) Explain how overlapping of windowed data segments influences the
bias, variance and resolution of the periodogram. 2]

c) Consider the problem of estimating the power spectrum of two sinusoids in
white Gaussian noise w(n] ~ N(0,1), given by

zln] = sin (0.2mn + @) + 2sin (0.327n + ;) + win], n=01,...,N-1

The total number of data points is N = 512. Assuming that the successive
sequences are offset by D points and that each sequence is L = 128 points
long, and if K sequences cover the entire N points, then

N=L+DK-1)

i) If the sequences are allowed to overlap by 50% (D = L/2), explain
how we can maintain the same resolution as Bartlett’s method while
reducing the variance. [4]

ii) If the sequences are allowed to overlap by 50% (D = L/2), explain
how we can increase the resolution while reducing the variance. [4]

iii) Sketch a general shape of the estimated power spectra for cases ) and
it). 2]
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2) One class of spectrum estimation methods assumes a harmonic model of the
process (Pisarenko, MUSIC, Principal Components spectrum estimation).
a) Explain the mechanism behind these techniques. (4]

b) Principal components spectrum estimation is based on the eigendecompo-
sition of the autocorrelation matrix R, given by

M P M
H
R,_,z == E )\iviV;H= E )\;‘V,‘Vl- =+ E )\,:v;v;q
i=1 i=1 i=p+1
N —— L—’_"

signal noise

where A;,i=1,..., M are the eigenvalues and v; the eigenvectors of R,,.

i) Write down the expression for power spectrum estimate based on the

signal subspace within the above decomposition. 2]

ii) Explain in your own words the difference between this method and
methods based on the noise subspace. 4]

iii) Explain how we can use principal component analysis (PCA) in con-
junction with other spectrum estimation methods. 2]

iv) Sketch a simple example combining PCA with the maximum entropy
and autoregressive spectrum estimation methods. 2]

¢) We would like to estimate the power spectrum of the autoregressive (AR)
process of order two (AR(2)), given by

z[n] = a1z[n — 1] + aszn — 2] + wn]
where w[n] is a unit variance white noise. However, the measurements of
z[n] are noisy, and we can only observe the process
yln] = z[n] + vin|

where v[n] is uncorrelated with z[n] and can be modelled as a moving
average (MA) process. The autocorrelation functions for y[n] and v[n] are
given respectively by

Twl0] =5  ry[l]=2 ryl2l=0 r,[8]=-1 r,[4=05

Tuel0]=3 1l =1
Explain how you would estimate the power spectrum of z[n].

(Hint: for uncorrelated processes ry,[n] = ryz[n] + ry[n))

[6]
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3) Consider the class of linear finite impulse response (FIR) adaptive filters.

a) Figure 3.1 shows the block diagram of a general adaptive system. Write
down the equations explaining the input-output relationships of this struc-

ture. Explain in your own words the operation of such a structure. (6]
/ Comparatorg
: Filter -@+ :
Input | Structure Desired
Signal | i Response
Control

Algorithm Error

Figure 3.1: General adaptive system

b) Figure 3.2 shows the block diagram of an adaptive line enhancer.

- /J; / eln)
B8 u(n)= s{n) + n(n) u(n-4) Wih order HUY
> -4 ]
W Ui & '@ e ‘ predictor # :D
1 / 7

i) State and explain the class of applications for this adaptive ﬁlterin%
scheme. 3
ii) Write down the equations describing the operation of this structure.
Comment on the role of the delay operator z=2. (3]

c¢) The predictor within this structure is trained using the Normalised Least
Mean Square (NLMS) algorithm.

i) Derive the NLMS algorithm by minimising the a posteriori prediction

error. (Hint: Expand the a posteriori error e(n + 1) using the Taylor

series expansion around e(n)) (4]

ii) Explain the role of the learning rate (step size) within NLMS and
provide the stability bounds for step size parameter p. [4]
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4) One way to derive the steepest descent algorithm for solving the normal equations
R.zw = ry, is to use a power series expansion for the inverse of R,,. This

expansion is

R;zl = #Z(I_ﬂRa:z)k

k:o

where I is the identity matrix, ry, is the crosscorrelation between the desired
input d and the input signal z, and p is a positive constant. In order for this
expression to converge, R,. must be positive definite and the constant p must
lie in the range 9

O<,u<a

where )., is the largest eigenvalue of R,,.

a)

c)

Let "
RZ(n)=p) (I~ pRa)"
k=0

be the n~th order approximation to RZ}, and let

W, = R,;l (n)reg

be the n~th order approximation to the desired solution w = R !r,,. Ex-
press R (n + 1) in terms of RZ!(n), and show how this may be used to
derive the steepest descent algorithm, given by

Wit = Wy = 1 [Rey Wy, — T ] (8]
(Hint: Multiply both sides of the ACF inverse by rg )

If the statistics of z(n) are unknown, then R, is unknown and the ex-
pansion for R;! in part a) cannot be evaluated. However, suppose we
approximate R,, = E{x(n)x?(n)} at time n as follows

Ra.(n) = x(n)x"(n)

and use, as the n-th order approximation to R}
- - k
R (n)=p ) [1- px(k)x" (k)]
k=0

Express Rz!(n + 1) in terms of R!(n) and use this expression to derive a
recursion for the weight vector w,.;. (8]

Compare your recursion derived in part b) to the LMS algorithm. (4]
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5) The Least Mean Square (LMS) adaptive filter minimises the instantaneous
squared error

J(n) = %eg(n)
Consider the modified cost function

J(n) = % ) + 5w (njw(n)

where § > 0, w(n) is the filter weight vector, and (-)T the vector transpose
operatar.

a) Derive the LMS coefficient update equation for w(n) that mimimises J'(n).

[6]

b) The cost function J'(n) has two terms, one minimising the mean squared
error and the second penalising for large values of the weight vector. Explain
in your own words the principle behind such a cost function. (3]

c) Determine the condition on the step size that will ensure that w(n) con-
verges in the mean.
(Fint: Apply the expectation operator to w(n + 1) to yield E{w(n + 1)},
and set the norm of the homogeneous term to be < 1) [3]

d) Hybrid filters consist of a convex combination of two standard LMS type
adaptive filters with different learning rates, which are updated separately,
based on their own instantaneous output errors e;(n) and ey(n). The out-
puts of the consitutive filters y;(n) and ys(n) are combined to give the
output of the hybrid filter

yua(n) =Ay(n) + (1 — ) ya(n)

where 0 < X < 1 is the convex mixing parameter. If \ is made adaptive,
show that

An+1) = A(n) + me(n) (3(n) —32(n))

Explain the similarities and differences between the hybrid filter and the
adaptive filter based on cost function J'(n) from a). 8]
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Solutions:

1) a) [bookwork]

N-1 2

Z x[k|e 7 1*

k=0

Clearly the periodogram is related to the estimation of the ACF, te better this
estimate the better the spectrum estimate. From the functional expression, the
standard periodogram uses a rectangular window to process the data, which in-
troduces problems due to the convolution in the frequency domain between the
true power spectrum and the sine function. The significant sidelobe of the sinc
in the frequency domain is the main problem with this approach.

b) [bookwork and intuitive reasoning]

i) The periodogram is asymptotically unbiased. By averaging a number of peri-
odograms, very much like with any other estimation problem, the variance reduces
up to the factor given by the number of averages (best for uncorrelated data).
The resolution is proportional to the number of data points, hence it reduces
appropriately (0.89 x K37)

ii) The windowed periodogram remains asymptotically unbiased. The window-
ing offers a trade off between spectral resolution (main lobe width) and spectral
masking (sidelobe amplitude). The variance estimate using this method, however
is not consistent.

iii) By overlapping segments of (possibly windowed) data, we combine the prop-
erties of the above two modifications. By choosing appropriately the size and
number of windows and the degree of overlapping, we can vritually span the
whole range of possible combinations of periodogram modifications.

¢) |[Analysis of new example]

i) The variance is reduced by means of averaging, ideally (for uncorrelated data)
by the number of averaged segments. By allowing the segments to overlap, we
generate a larger number of segments, which in turn help with the number of
estimates to be averaged. If there is no overlap (D = L), we have K = N/L
sections of lenth L (Bartlett’s method). If the sequences are overlapping by 50%,
then D = L/2 and we may form K = 2N/L — 1 sections of length L this main-
taining the same resolution as Bartlett’s method while doubling the number of
modified periodograms that are averaged, thereby reducing the variance.

ii) with 50% overlap we can also form K = N/L — 1 sequences of length 2L,
thus increasing the resolution, whle maintaining the same variance as Bartlett’s
method. Therefore, by allowing the segments to overlap, we can trade a reduction
in variance for a reduction in resolution.

iii) Straightforward from the corresponding examples from course notes.



2) a) [bookwork|

These methods assume that power spectum at a discrete set of frequencies has
physical meaning (information bearing such is in radar, sonar, speech). The
idea is to use eigendecomposition to decompose the autocorrelation matrix of the
(noisy) data into the signal related part and noise related part. Based on the
orthogonality between the useful signal and noise we may use the noise subspace
or signal subspace for power spectrum estimation at the desired set of frequencies
of interest. The so produced power spectrum estimate need not be accurate
outside the discrete set of frequencies of interest.

b) [bookwork and intuitive reasoning]

i)

P
RS = Z )\,‘ViV.;H
§=1

ii) The methods based on the noise subspace estimation produce a peak in the
spectrum for a discrete set of frequencies of interest. The PCA based spectrum
estimate on the other hand imposes a rank constraint on the signal subspace and
provides an estimate of the ACF of the signal.

iii) Since this method produces an estimate of ACF, it can be used in conjunction
with other standard methods which rely on an estimate of ACF.

iv) R,, from above can be used directly within autoregressive spectrum estimation
since it provides an estimate of ACF. It can also be used within MEM, due to
the duality between the autoregressive and MEM spectrum estimation.

¢) [new example]
Due to the orthogonality between signal and noise and the MA noise model we
have

Tee[n] = Tyln] —re[n] which gives
T2z[0] = 2 rez[l] =1 7:[2]=0 18] =—-1 re[4 =105

We therefore know the dimension of the signal subspace and by performing since
we know the ACF of the data, we can employ any ACF based spectrum estimation
method.



3) a) [bookwork]

Filter architecture (FIR, IIR, linear, nonlinear)

Input {z}, output {y}, and desired d} signal

Filter furiction:- prediction, system identification, inverse system modelling,
noise cancellation

Adaptation:- Based on the error e(n) = d(n) — y(n)

o
—

—
—

i) and ii)[bookwork, worked example]

Adaptive line enhancement (ALE) refers to the case where a noisy signal,
%Jl = ‘sin(n)' + ‘wn(n)’

O ALE consists of a de-correlation stage, symbolised by z~# and an adaptive

predictor
The de-correlation stage attempts to remove any correlation that may exist

between the samples of noise, by shifting them A samples apart
A phase shift introduced (input A steps behind)
This way, if the decorrelation is performed in a satisfactory way, denoising

boils down to adaptive prediction.
i) [bookwork, coursework, and worked example|
e Start from the independence assumptions, that is that w, x, i, and e are
independent and mutually Gaussian
¢ Normalisation < minimisation of the a posteriori error e(k + 1)
e(k+1) = x"(k)w(k + 1)

O

O

oo

e Perform Taylor Series Expansion around e(k) to obtain

N e N
olk+1) = elk) +] ;ﬂg‘%mi(kn (,f;((%mi(k)
| e k L 32

e Now the pagl?k)derwatlves from TSE expansion become
—zk—i+1)=—2;(k), i=12,...,N

ow; (k)
Awy(k) = pe(k)z;(k)
e And finally N
e(k +1)=e(k) - Zue(k)xf =e(k) [1 - u || x(k) |IZ]
e to give 7
B =T

ii) [bookwork and intuitive reasoning| The learning rate is normalised by
the power of the input vector in the memory of the filter. This is a very simple
estimate of the autocorrelation function, and as such, the normalisation aims at
decorrelating the tap input in order to provide faster convergence. For stability
O<pug



4) [New example and bookwork]
a) Using the n-th order approximation to R},

R} (n) =) (I- pRy)"
k=0

we have
n+1 i
k=0 =0
Therefore

R (n+1) = (I— pRaz) Rz (n) + pl
Multiplying both sides of the equation ty ry, on the right, we have
Wnt1 = (I - ,uR.z::) Wy, -+ Uty

which is the steepest descent algorithm.

b) Using the approximation R, = x(n)x%(n), we have
R (n+1) = (I- px(n)x"(n)) R;} (n) + ul
Multiplying both sides of the equation by r,,; on the right we have
W1 = [T = ()T ()] W + o1

¢) If we use the approximation rg, = d(n)z(n) then the above recursion becomes
equivalent to the LMS algorithm.



5) [New example]
We first need to evaluate the gradient of J'(n), that is

VJ'(n) = V[1/2€*(n)] + B/2V[wT (n)w(n)]
Using the standard LMS type of approach we have

V[1/2e%(n)] = —e(n)x(n)
V(12w (n)w(n)] = w(n)

which gives the final update based on J'(n)
w(n+1) = w(n) + pe(n)x(n) — pBw(n) = (1 — pB) w(n) + pe(n)x(n)

b) The additional term in J'(n) represents the regularisation parameter. Cost
function J'(n) is convex and has a unique minimum, which provides balance
between the minimisation of MSE and the size of the weights. The principle
behind this cost function is similar to that in methods for determining the order
of an AR model (MDL, AIC).

¢) Using the standard LMS type approach we have
E{w(n+ 1)} = [(1 — uB)I — uR..] E{w(n)} + purs

Therefore for stability (convergence in the mean), we require

1=y =udilzl, E=01%.., (i g i
|(1 = Bu) — pAil = O<psgy—

d) From
M+ 1) = A(n) - V;%eg(n)

and knowing that the inputs to the A update are the outputs of the consitutive
filters y1(n) and y2(n) we obtain the update equation straightforwardly.

Clearly, cost functions with two terms can be thought of as two adaptive filters
running in parallel. If those terms were combined in a convex manner with an
adaptive A, the cost function J'(n) could be seen as a cost function of a hybrid
filter.



