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I Consider the problem of periodogram based spectrum estimation.

a1 Write down the expression for the periodogram.

1]
i) Show how the periodogram can be computed from the discrete Fourier
transform of a signal. 2]

ii) Compute the bias of the periodogram. Is the periodogram biased?

iii) What is the variance of the periodogram proportional to? 2]

iv) Comment on the performance of the periodogram. 2]

b) A random process is known to consist of a single sinusoid with frequency
wp in white noise w(n), given by

z(n) = Asin(nwo + ¢) + w(n)

where the variance of w(n) is o2.
i) Suppose that the first three values of the autocorrelation sequence are
estimated and found to be

r:(0)=1 r,(1) =08 r(2)=0

Find and prepare a carefully labeled sketch of the spectrum estimate
that is formed using the Blackman-Tukey method with a rectangular
window. [4]

ii) Suppose that we compute the periodogram Pper(ef“’) using N sam-
ples of z(n) (Bartlett method). Find and prepare a carefully labeled
sketch of the expected value of this spectrum estimate. Is this estimate
biased? Is it consistent? 6]
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(‘onsider the problem of parametric spectrum estimation.

a) Explain the limitations of classical periodogram based methods and the
need for parametric spectrum estimation techniques. 3]

b) Define the autoregressive (AR) spectrum estimation, and state the expres-

sion of a general AR power spectrum. 2]
i) Describe two typical AR modelling techniques. 2]
ii) What is the philosophy behind AR model order selection? 2]

) Define the moving average (MA) spectrum estimation and state the expres-
sion for a general MA power spectrum. 2]

i) Explain the differences between the AR and MA spectrum. Which of
the two is more suitable for estimating spectra with peaks? (2]

ii) By visual inspection or otherwise, conclude whether the spectrum
given in the Figure below is most likely to be an AR, MA, or ARMA
spectrum. Explain. [5]

iii) What are the limitations of parametric spectrum estimation tech-
niques? 2]

? T T T T T T j

as

Figure 1: Power spectrum (in dB)
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31 Consider adaptive filters with feedback.
) Sketch the block diagram of an adaptive infinite impulse response (IIR)
filter. 2]

b) For adaptive IIR filters, what is the difference between the equation er-
ror and output error mode of training? Does the equation error learning,

strictly speaking, reflect the nature of this feedback structure? 3]
¢) Derive the learning algorithm for an adaptive IIR filter in the output error
mode. 7]
) Explain the need for nonlinear feedback filters. (4)

i) Explain the difference between an IIR filter and recurrent perceptron]
[2

ii) Sketch the block diagram of a recurrent perceptron which realises the
following difference equation

y(n) = @(0.1y(n — 1) + 0.8z(n — 1) + 0.2z(n — 2) +0.9)

where @ is some saturating nonlinear function.
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1) Explain the notions of parametric, nonparametric and semi-parametric mod-
elling. : 3]

b} Explain the modes of operation of filtering, smooting and prediction. 3]

i) What operation is performed by a filter given by
y(n) = [z(n - 2) +z(n - 1)+ z(n + 1) +z(n+2)])/4
2]
1i) What operation is performed by a filter given by
y(n) = [z(n) + z(n — 1) + z(n - 2) + z(n — 3)] /4 2

¢) State the problem of general sequential state estimation. Write down the
equations that describe such a model, and explain the variables and func-

tions involved. 2)
) Write down the equation of the vector Gauss—Markov model. (3]
L
i) What is the form of the state transition matrix? ‘m 2\ ;“ n{ % onta ™
ii) Sketch the block diagram of Kalman filter. Explain the signal flow in ‘
such a structure. 2]
iii) What is the criterion of optimality for such a filter? 1]
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5 The weight update of the Least Mean Square (LMS) algorithm for linear finite
mmpulse response (FIR) adaptive filters is given by

w(k +1) = w(k) + pe(k)x(k)

where w(k) is the weight (coefficient) vector at time instant k, x(k) is the input
vector. u is the learning rate, and e(k) is the instantaneous output error of the
flter.

a) One modification of this algorithm is the so—called data reusing (DR) LMS.
Write down the weight update for this algorithm, for i = 1,...,L data
reusing iterations. ( Hint: for a time instant k we reiterate weight updates
w;(k), where wy(k) = w(k) and wr41(k) = w(k + 1) for a fixed external

input vector x(k) ). 4]
i) What is the motivation for using this algoritm? 2]
ii) Give a geometric explanation of the data reusing method. [2]

iii) Describe the relation between the DR algorithm and the NLMS algo-
rithm. Where does w;,1(k) converge when i — oo? 1]

iv) Calculate the total weight update for L data reusing iterations for a
fixed time instant k. 1]

b) Derive the DR algorithm for a simple nonlinear FIR filter (dynamical per-
ceptron) given in the Figure 2. Nonlinearity @ is of a saturating type.

i) In your own words, give a geometric interpretation in this case. (2]
ii) Is the algorithm more likely to converge for ® > 0 or for ' < 07 2]

iii) Describe the relation between the step size yu and the slope of the

nonlinearity ® so that such an algorithm converges. 2]
x(k) _["—ij x(k-1) m x(k-2) J\Z“—"’ x(k-N+1)
Fwil) wa(K) w3(K) w(k)
)

Figure 2: Nonlinear FIR filter
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Solutions:
-
bha) Poel) Zk—-oo ( o Ihw = [‘_—:’)2\)
Dy YA( — FIXn(R)[? = Bper (e7™)
1) E{ra(k) = ”—7 )} = E{Byerle”} = 2Po(e) « Wale®) [ 3]
where Wg is the Bartlett window. Therefore the periodogram is a biased esti-
mated. but since Wz convergs to impulse as IV goes to infinity, it is asymptotically

;111l)i21‘se(11
a1} var{ Py, (e?)} = P2(e) C [,3 ~+ C'LJ
hit) Poer) = Qf:J/] re(k)e™ =1 4+ 2fcosw C ,_1)

e

B{Pple) = P Wil
oy & sin(Nw/2) 2
Wole) =5 o

Po(e*) = 1/2m A%uo(w — wo) + uo(w + wo)] + 0,
2 2

= E{Pper(e™} = =P(e?) * Wg(e?) =
s

= g2 + 1/4A2[W73(€J(w~wo)) + WB(e](w+wg)]

u

Ihe periodogam is biased and since the variance does not go to zero as N — 00
It is not a consistent estimate ot the power spectrum.
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2) a) They are not consistent estimators, they give poor resolution and do not
work well on short data records. They are also limited in their ability to resolve
losely spaced narrowbad processes when the number of data saples is limited.
An adantage: they do not make any assumptions or place any constraints on the
process and can be used for any type of processes. C BJ

5] ARMA spectrum is given by

Ca)

. 2
. > h—o by(k)e=7h
P.(e) =
) 11+ 300 ap(k)eke]®

For the AR spectrum, we have only the denominator of the above expression,

whereas for the MA spectrum the denominator of the above expression is con-

stant

i1 The autocorrelation and covariance method. The difference is in the way they Cli)
estimate the ACF. The artifact of the autocorrelation method is spectral line

splitting. In the covariance method, no data windowing is needed. Produces

higher resolution for short data record than the autocorrelation method.

11} To penalise for the model order. Tha MDL and AIC critera both have two CL]

ters
model order = min e + penalty for complexity

<1 See b) C1)
11 The AR spectrum is more suitable for modelling peaks in spectrum (has poles in

rransfer function). The MA spectrum is more suitable for modelling flat spectra C1)
and spectra with zeros in transfer function.

i1} The spectrum in the Figure is most likely to be an ARMA spectrum, since it -
Has a peak and a zero. In fact it is an ARMA(2,2) process with the zeros of H(z) Cy )
at = = 0.95¢%7/2 and the poles at z = 0.9e7%7/5,

1i) The selection of model order is a critical step. It often requires some a priori -
knowledge. The problem is that is is of crucial importance that the model that L O

w used is consistend with the process being analysed.
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i) Two classes of adaptive learning algorithms
e equation error — the desired signal d(k) is fed back
e output error— estimated outputs g(k) fed back.

1 Define the gradient Ve (E(k)) for cost function E(k) = 1e2(k) as
Vel(E(k)) = sors = eor(k)Veeor(k) = —eor(k)Veyor(k) (1)

where (k) = [bi(k), ..., bar(k), ar(k), .-, aN(k)]T. The gradient vector consists
of partial derivatives of the output with respect to filter coefficients

Vevor(k) = dyor(k) oyor(k) dyor(k) 3y05(k)}T o
h E ab](k/) s ee oty 8bM(k) 9 aal(k)) ey aaN(k)
Take the derivatives of both sides of (??) wrt a;(k) and b;(k)
Oyor(k) _ L al Oyor(k —m)
@ai(k:) - yoE(}b — Z) -+ mz::l am(k) aal(k)
dyor(k) X ok —m)
ab, (k) x(k —j) + ; am (k) o ) 3

partial derivatives are wrt current values of a, (k) and by (k), = (3) non—
recursive

o If © were independent of {y(k — i)} calculation identical to the FIR case
o We have to use the pseudolinear regression algorithm

Ok)~Ok 1)~ - =0k -N) (4)

€9



The previous approximation is particularly good for N small.

Oyor(k) ayoz;lC m)

oy~ voslk—r *mzl ) Btk —m)

ayog(k) —_ Al ayOE k‘ m)

G RRRLAREL SE i w =y )

=1

This admits computation in a recursive fashion. For compactness intro-
dnce the weight vector w(k) as

w(k) = [br (k). ba(k), .- bar(k), a1 (K), aa(k), .., an(K)) (6)
and the IR filter input vector u(k) as
u(k) = [k —1),...,x(k = M),y(k = 1),....y(k = N)|T (7)

Chus. wo (k) = by(k), wyrpa(k) = az(k), uar(k) = x(k—M), or up41(k) = y(k-1),

and

dyOE ayOE(k —m)
i(k e e 8
Buwi(k) )+ Z Wt (K 6wi(k —m) ®
Denote (k) = %Oﬁg(—l(c’;—), i=1,...,M+ N, to yield
N
mi(k) =~ ui(k) + Z W ar (B) i (k —m) (9)
m=1

Finally -) weight update equation for a linear IIR adaptive filter
wik+ 1) = w(k) - n(k)e(R)m(k), w(k) = [m(k), ..., muen(®)] (10)

1y There are numerous situations in which the use of linear filters and models is
Hmited:-

e when trying to identify a saturation type nonlinearity, linear models will
inevitably fail
o when separating signals with overlapping spectral components

e systems rich dynamical behaviour such as limit cycles, bifurcations and
fixed points, cannot be captured by linear models

e communications channels, for instance, often need nonlinear equalizers to
achieve acceptable performance
11 recurrent perceptron =IIR filter with an additional output saturating nonlin-
sarity
i1 As in a) with the feedback weight 0.1, feedforward weights 0.8 and 0.2 and
bias weight 0.9,

Cu))

c1)

C)
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e Parametric modelling assumes a fixed structure for the model. The model
identification problem then simplifies to estimating a finite set of parameters
of this fixed model. An example of this technique is the broad class of

b1 Filtering: ¢ = s[n] to be estimated based on z[m] = sfmj+w[m]m =0,1,...,n.
Filters signal from noise, based on current and past data, i.e. casual filtering.

ARIMA/NARMA models.

Nonparametric modelling seeks a particular model structure from the

input, data. The actual model is not known beforehand.

We look for a model in the form of y(k) = f (z(k)) without knowing the

function f(-).

Semiparametric modelling is the combination of the above. Part of the
model structure is completely specified and known beforehand, whereas the
other part of the model is either not known or loosely specified.

3

Smoothing: # = s[n] to be estimated based on entire dataset {z[0], z(1], ..., z[N —
1'}. Requires all data to be collected.
Prediction: ¢ = [N —1+1] for [ a positive integer based on {z[0], z[1], ..., z[N=1]}
J-step” forward prediction.

|1 it is smoothing, y(n) is estimated based on previous an future values of y.

i) filtering

rk+1) =

y(k)

fla(k), k) + Glz(k), Kjw(k)

h(xz(k), k) +v(k)

r(k), y(k) are Ny and N, dimensional stochastic processes

d(k) and v(k) are noise processes

(). G(-), h(-) — known functions

State vector

) sln —p+ 1] i
sin —p + 2|

sin _ 1]

s[nl

0

0

| —a(p) —alp—1)

1 0
0
0 1

sin —pl
sin —p+1]
s[n. 2]

State transition matric A

s

P
1)
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e u[n] can be ar x 1 vector - models a vector signal output with vector input

;1 it s the companion matrix given above C ‘3
u [n] »(T) - s [n]

T1)

Dynamic Model

az
% n G r-=-—""TTTTTTTTTYL
x [n] K[n] T o & nin]
I 1
[} [l
| | Kalman Filter
+ az™ !
| I
b e ]

Dynamic Model

i) Criterion of optimality

E {(sfn) — 8lnlm))’) O

with respect to p(x[0],z{1),...z[n],s[n])




ei(k) = d(k) — x" (k)wi (k)
wii1(k) = wi(k) + nei(k)x(k)
subject to
{ei+](k:)‘ S ﬂ/‘ei(k”a 0< Y < 17 1= 1a o -7L

.1 To “correct” the noisy gradients using a posteriori procedures

i) It iteratively updates the weights in the direction of the data vector. In terms
of the error, it gradually decreases towards the NLMS error.

i) DR algorithms approaches the NLMS algorithm when the number of DR it-
crations is large.

A Zf::l Aw;(n).

ei(k) = ylk) — &(x"(k)wi(k)
w1 (k) = wi(k,)+/Lei(k)@’(xT(k)wi(k))x(k)

. similar to the interpretation for the linear function, but the slope @’ also plays
important role

1) For a linear algorithm, @ = 0. If ®' is large, then the algorithm may diverge
‘ot contractive function), if ® < 0 the algorithm is always stable.

i) The effective step size above becomes p x @', and this should be taken into

account when considering stability.

C)
)

c1)
i)
(4D
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L)

T)



