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Special Instructions for Invigilator:

Information for Students:

1
=1-(x)=1-——
O(x) (x) om

If needed, for any y different from all the x values given below, O(y) can be

None

Complementary Normal Distribution

— 0

approximated by linear interpolation of the values of O(x) at the two x values closest

to y.

X O(x) X O(x)

0 5.00e-01 27 3.47e-03
0.1 4.60e-01 2.8 2.56e-03
0.2 4.21e-01 2.9 1.87e-03
0.3 3.82e-01 3.0 1.35e-03
0.4 3.45e-01 3.1 9.68e-04
0.5 3.09e-01 3.2 6.87e-04
0.6 2.74e-01 3.3 4.83e-04
0.7 2.42e-01 3.4 3.37e-04
0.8 2.12e-01 3.5 2.33e-04
0.9 1.84e-01 3.6 1.59e-04
1.0 1.59e-01 3.7 1.08e-04
1.1 1.36e-01 3.8 7.24e-05
1.2 1.15e-01 3.9 4.81e-05
1.3 9.68e-02 4.0 3.17e-05
1:3 8.08e-02 4.5 3.40e-06
1.5 6.68e-02 5.0 2.87e-07
1.6 5.48e-02 5.5 1.90e-08
1.7 4.46e-02 6.0 9.87e-10
1.8 3.59¢-02 6.5 4.02e-11
1.9 2.87e-02 7.0 1.28e-12
2.0 2.28e-02 7:5 3.19e-14
2.1 1.79e-02 8.0 6.22e-16
2.2 1.39¢-02 8.5 9.48e-19
2.3 1.07e-02 9.0 1.13e-19
2.4 8.20e-03 9.5 1.05e-21
2.5 6.21e-03 10.0 7.62e-24
2.6 4.66e-03
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1. a. A communication link transmits digits of 0 and 1. With probability 0.9, the receiver can
correctly detect a digit 1 when it is in fact sent, However, with probability of 0.03, the receiver
incorrectly detects a digit 1 when a digit 0 is in fact sent. If digits 0 and 1 are actually sent with
probability 0.6 and 0.4, respectively, what is the probability the sent digit is 1, given that the
receiver does detect a digit 1?7

(Hint: Use Bayes’ rule.) [9]

b. X and Y are two independent identically distributed (i.i.d.) scalar random variables with the
probability density function (pdf)

1
f@) = o 0<?<W where Wis a constant.

Define a new random variable Z = X - Y . Find the pdf for Z. 7]

c. Let {X;) be a sequence of identically distributed mutually independent Bernoulli random
variables with
P(X;=D)=p and P(X;=0)=1-p
where 0 < p<1.Let Sy =X +X; +..+ Xy where N is an integer-valued random variable
with

s
ad €
P(N =m) = - for m=0,1,2, .. and @ >0 is a constant.

Show that the probability generating function (i.e., the z-transform) for Sy is
s (5)=ePED,
(9]
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2. a. A scalar random variable X has the following probability density function (pdf)

——Q‘]ﬂ —wo<i<w

a
n=42
I X( ) <
where a >0 is a constant. Derive the Laplace transform (L.T.) of ./ X (*) . Hence, or

otherwise, obtain the mean and variance of .X.

b. Consider the merging of two independent Poisson processes A and B with their respective

arrival rates of 44 and Ag. That is, the probability density functions (pdf’s) for their

; oy . - Aqt 4 . .
interarrival times are given by 44¢ and Age , respectively. A realization of the
merged arrival process is shown in the following figure.

I i Ip

time

I 1 i | ]
4, 4, By B, 4;

th ;
4;:The i arrival of Poisson process A and

th ;
B;:The i arrival of Poisson process B.

Let us prove that the merged process is also a Poisson process as follows. Without loss of
generality, consider that an arrival from either process A or B has just occurred at time 7 (e.g.,

Ay in the above diagram). Further, let?4 and 7 be the time when the first arrival from
process A and B arrive after time ¢, respectively.

i.  Are the time durations (74 1) and (t3 —¢) independent of the evolution of the processes
A and B prior to time t? Why? [2]

ii.  Determine the respective pdf’s for the time durations (¢4 —¢) and (t5 —1) . [3]

iii.  Show that the pdf for the time duration from time ¢ to the next arrival time, regardless of
whether it arrives from process A or B, is given by

— (A4 + A

(A4+4p)e il

iv.  Comment on the result for merging more than two Poisson arrival processes. [3]

Probability & Stochastic Processes Page 3 of 7



3. a. Consider four scalar random variables, X, ¥, U and ¥, which are related by the following linear
transformation

U=aX+bY
V=cX+dY

where a, b, ¢ and d are constants.

) 2 2 2 2.2 )
1. Show that Oy =a Oy + 2fl’i'?'C(lW'[XY] +b°o y where O'% denotes the variance for any
given scalar random variable Z and COV[XY] is the covariance of X and Y.

[4]
ii. Show that cov[UV] = acoﬁ, +(bc +ad)cov[XY]+ bda}% ] [4]
b. Suppose that two random processes, X(?) and Y(1), are jointly wide-sense stationary. Their
cross-correlation functions are given by
Ry (1) = ELX()Y (1 +7)]
Ryy (7) =E[Y(H)X(t+7)]
where ¢ andt are arbitrary.
i.. Prove that RXY(_T) = RYX (T) i [3]
2
ii. Prove that | R ., (7) I< *;'[RX(O} + Ry (0)] where R (0) = E[X™(£)] and
2
Ry (0)= E[Y" (1) [5]

(Hint: Consider E[{X(1)£k¥(t+7)}°120 and then st k appropriately.)

iii. Prove that | RXY(T) <Ry (R, (0)

2
(Hint: Again consider E[{X(¢) +kY(r+7)}"12 0 with appropriate £.)

[7]

iv. Comment on which one of the upper bounds for | R+, () | in parts ii and iii is tighter and
why. [2]
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4. a. A production line is designed to manufacture 8,200 Q resistors. Collectively, the resistance
(denoted by X) of the produced resistors can be modelled as a Gaussian random variable with

amean #=§8,200Q and a standard deviation o =615 Following manufacture, all
resistors are measured exactly. Resistors having values within 5% of 8,200 Q (i.e., within
8,200 £ 410 Q) are separated from the others to be marked and sold. The conditioning event A
is defined as

A={7,790Q< X <8,610Q} .

1. Using the complementary normal distribution given at the beginning of this examination
paper, determine the probability of event A. [6]

i1. Give an expression for the standard deviation of the resistance given the condition A.
(No need to carry out the calculation.) [3]

b. Consider that X is a scalar random variable with mean 0 and finite variance 0'2 .

i. Prove that foranya, 6>0
2 2
Plxzaj< EE+DT_o® 4 | -
(a+b)?  (a+b)?

(Hint: Apply Markov’s inequality.)

ii. By optimizing the value for b in the result of part i, prove that

2

&

P[X >a]< =, 4]
g +a
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J. a. A random variable X is observed and used to predict the value of a second random variable ¥,
Let us choose the predictor for ¥, denoted by & (X), based on observations of X so that the
mean squared error E[(Y — g(X))"]is minimized. Under this criterion, show that the best

possible predictor of Y'is g(X)=E[Y | X]. That is, prove the following
E[(Y - g(X))* 12 E[(Y - E[Y | X])*]. [12]

(Hint: Consider E[(Y—g(X))2 | X] first.)

b. Ina digital signal-processing system, raw continuous analog data X is characterized bya
probability distribution and density functions, Fy (x) and fy (x) , respectively. X must be
quantized to obtain a digital representation. To quantize the raw data X, an increasing

sequence of numbers @; for =0,£1,£2,..., suchthat iM @; =©,pq lim a; = - ;¢
i=» o0 i— -
fixed and the raw data are then quantized according to the interval (a;,aﬁ. 1] in which X lies.

Let }; be the discretized value when X € (g, N ] Let ¥ denote the observed discretized
value as

Y=y if Xe(a,a,,].

The distribution of Y is given by
P(Y =)’f) :Fx(af.g.])_FX(a;‘).

Suppose now that we want to choose the values ¥;, i = 0,£1,+2,... g0 as to minimize

2 ;
E[(X =Y)"], the expected mean square difference between the raw data and their quantized
Version.

i.  Find the optimal values y;, i =0,£1,£2,.. (8]
(Hint: Apply the best predictor in part a.)

ii. For the optimal quantizer ¥, show that E[¥] = E[X] so the mean square error quantizer
preserves the input mean. [5]
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6. Consider a communication channel with memory buffer to store and transmit data packets. The
channel time is divided into slots and exactly one packet can be transmitted in each time slot.

Packets arrive at the channel according to an independent renewal process {@;, i =0,1,2,...}

where &; denotes the probability that 7 packets arrive in a time slot. (Obviously, 2izga; =1 )

Completion of a packet transmission and packet arrivals, if any, are assumed to occur
immediately before and right at the end of a time slot, respectively. The buffer is limited in size
and can store up to X packets, including the one being transmitted. New arriving packets fill the
buffer to up its size limit and “overflow” packets finding the buffer fully occupied are lost from
the system.

a. Draw a state transition diagram for the Markov chain representing the channel. 3]

b. Provide the state-transition probability matrix P for the Markov chain. [9]
(Hint: Be careful about the cases where more packets arriving than the buffer can hold.)
c. Denote the state probabilities at steady state by Z = (?fo 715 %y s o) Where 7. is the

probability of having i packets in the system at the end of a time slot. Provide the equations

from which 7 can be solved. (No need to solve them.) [3]

d. Define the link utilization p as the fraction of time during which the channel is transmitting

packets at steady state. Express 0 in terms of {F’TO,R’]JFZ il e d [3]

e. Obtain the probability 2. that packet overflow (loss) occurs in an arbitrary time slot in terms

of {;ro,xl,zrz,...,er} and {Q;,i=0,1,2,.}. [4]

f. Now, assume that the number of packets arriving in a time slot depends on the number of
packets currently existing in the system. For example, the more packets existing in the system,
the smaller the probability that new packets will arrive in the next time slot. Can the channel
still be modelled as a Markov chain and why? [3]
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