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Coding Theory



We shall say that two linear codes are eguivalent if they have the same length, rank

and minimal distance.

a. Let C be the triple check code with the check matrix

i = R

11010
10101
01100

Construct the check matrix of the code C” obtained from C by adding an overall parity
check bit.

[5]

Show that C” has length 7 and can correct single bit errors. Justifying your conclusion
carefully, determine whether C” is equivalent to the Hamming code Ham(3).

[10]

b. Let C” be the code obtained by puncturing Ham(3), that is by deleting the last
entry of all code words of Ham(3). Construct a check matrix for C”.

[5]

Find the rank and minimal distance of C”. Is C” equivalent to the Triple Check Code?

[5]
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Define the term r-perfect code. Define (binary) Hamming codes and show that they

are 1-perfect.
8]

Let E be a (not necessarily linear) binary code of length 8, show that if E can correct

all single errors, then it has at most 28 code words. Show that there is no binary
perfect code of length 8.

[10]

Show that the code BCH(4,3) which has length 15, rank > 3 and minimal distance

at least 7, is not r-perfect for any r.

[7]
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Define the characteristic of a finite field and prove that it is a prime number.

[5]

Prove that in a field of characteristic p the equality (a + )7 = a? + b? holds for every
a and b.

[5]

Deduce that an element of a field of characteristic p cannot have more that one pth

root.

[6]

Show that if F' is a finite field of characteristic p, then every element of F' has a pth
root.

[5]

Suppose that a is a primitive element of a field of order 256, find in the form o™ all
the fourth roots of a.

[4]
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The field E = GF(16) given by the table at the beginning of the paper contains a
subfield F' of order 4 consisting of the elements {0,1,10,11}. Show that it does not
contain a subfield of order 8, proving any theoretical results that you use.

[9]

Now show that for any element 3 of F the elements 3 and * have the same minimal

polynomial over F.

[6]

Hence or otherwise determine the minimal polynomials of all the elements of E over

i 0

[10]
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Three polynomial codes A, B, C of length 15, have generator polynomials as follows:

A: 20+ 28+ 25+t + 22+ +1
B:zW+ 22 +28 4+ 4+t +22+2+1
C:29+z28+2°+24+22+1

For each A and B determine whether the code is cyclic or not.

The code C is cyclic. Find its check polynomiale

o,

Determine for each of the following words whether it is a code word of C.

—
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Coding Theory

[5 each]

[5]

[5 each]
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6. Find the generator and check polynomials for the Reed-Solomon Code RS(4,4) based
on the primitive element 2 € GF(16).

12
State the rank r and the minimal distance d of the code.
(3]
Find a code word of weight d.
[5]

What is the code word that starts with the sequence 1, ..., 7, where r is defined above?

[5]
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All unseen

SOLUTION 1

a. If a code word ends with k check bits, then the rows of the check matrix
of a code correspond to the equations determining the check bits. and the
final k columns give the coefficients of the check bits in these equations. So
the check matrix of C' is

1
0

-
= 1
1

el et s =
-0 o

0 0
10
0 1
11

_— D
-0 o O

There are other valid check matrices, and they will be accepted, but this is the
one the candidates are most likely to produce.

The block length is the length of the words in the code. Since they satisfy
H'u = 0, that must be 7.

Any single bit error will produce a syndrome equal to the column of the check
matrix H' corresponding to its location. As these are all distinct and non-zero.
The code will detect both the presence of such an error and its location. So
the code can correct single bit errors.

Some candidates may quote the result from the lectures that a binary code with
check matriz with distinct non-zero columns can correct single errors. They
should then prove it along the lines given above.

As the rank of H' is 4 (its rows are independent), the rank of the code C" is
7 — 4 = 3. Ham(3) has rank 4. So the codes are not equivalent.

b. By the same argument as in part (a) we obtain the check matrix H" of
C” by stripping the last column and last row from the standard form check
matrix Hz of Ham(3).

110

1 0 1)

It is important that the matriz Hj is chosen in standard form, but I shall not
penalize candidates for not stating that.

The block length of this code is 6, and since H” has rank 2, the rank of C" is
6—2 = 4. Since the columns of H” are all non-zero the code csan detect single
bit errors, but as the second and last column are equal, it cannot determine
their location. Hence the code has minimum distance 2, and is not equivalent

to the Triple Check Code.

1

1 01

Hy= | 1 110
1

==
— O

110 0
1010}, H”:(
00 0 1
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SOLUTION 2

A code is r-perfect if every received word lies with Hamming distance r of
exactly one code word.

The code Ham(k) has as its check matrix a binary k x 2% — 1 matrix whose
columns are all non-zero binary k-tuples, each occurring once. A received
word has syndrome 0 or its syndrome is equal to a unique column of the
check matrix. In the first case it is a code word. In the second changing
the bit corresponding to the column equal to its syndrome produces a code
word. Changing any other bit adds the corresponding column to the syndrome,
which therefore does not become 0. That means it does not produce a code
word. Thus every non-code word is at distance 1 from a unique code word
and Ham(k) is perfect.

For block length 8 the number N; =1+ 8 = 9. If a code C' of block length
8 can correct single errors, then the disks of Hamming radius 1 around code
words must be disjoint. So

IC]9 < 28 = 256.

Hence |C| <256/9 < 29. Thus |C] < 28.

The disks of radius 1, 2 and 3 about code words of block length 8 contain 9,
9+4x7=37and 37+4 x 7x 2 =93 words. None of these numbers exactly
divide 256 and therefore there cannot be r—perfect codes for r = 1, 2, 3. The
greatest possible distance between words in B? is 8 and so disks of radius > 4
cannot be disjoint. Therefore there are no r-perfect codes for r > 4.

If BCH(4,3) were r—perfect, r would have to be at least 3. Let N, denote the
number of words at distance at most 7 from a code word. For an r—perfect
binary linear code C' of block length 15 we must have |C| Ny = 25 and if the
code has rank m, then |C| = 2™. Hence N, must be 2'5~™. Now

N,"=1+15+(125)+---+(1T5). (%)

Calculating this value for successive values of r starting with r = 3 we get
N3 = 576, Ny = 1941, N5 = 4946,. ..

None of these are powers of 2, and the last is greater than 2153 = 212,
Therefore BCH(4,3) cannot be perfect.
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SOLUTION 3

The characicristic of a finite field is the smallest number of times that 1 must
be added to itself to produce 0. We denote the sum of n copies of 1 bynol.
The distributive law implies that (mo1l)(nel) = (mn)o 1. Let p be the
smallest positive number such that pol =0. If p= mn with m,n < p then
0=(mol)(nol. sooneofmol and n o 1 must be zero, contradicting the

minimality of p. Hence p has no proper factors and is prime..
First note that p-ra=(p-1)a=0-a=0. Nezt, obiserve that the binomial
theorem allows us to calculate (a + b)P:

esor= (e (Jese+ ()7

But the formula (£) = p!/(k{p—k)!) shows that fork #0,p, (2) is a multiple
of p. So all the middle terms of the expansion are 0. Hence (a+b)f = a?+&.
Suppose that a? = y* = a. Then a? —y? =0. If the characteristic p is odd,
then —yP = (—y)F. If it is 2. then —y? = y* = (=y)?. In either case we have
P+ (~y)? = 0 Hence (x+(-y))* =0 end soz—y=0orz=y. Thusa has
at most one pth root.

Consider the pih powers od the elements of F'. By what has been just shown
they are all distinct and there are exactly |F| of them, hence every element of

wt

F must occur as « pth power and so they all have pth roots.

Since square roots are unique and exist, there is ezactly one fourth root of any
field element in GF(256). We need to find n so that 4n =7 (mod 255). The
unique answer is n = 193 (mod 255), which can be found by trial and error

or using Euclid’s algorithm.
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SOLUTION 4

There are several ways to show that there is no field of subfield of order 8.
The first is to use the theoretical result that if F' C E for a pair of finite fields
then |E| = |F|* for some n. That is proved by noting that F must be a
vector space over I and since it is finite it mustt be finite-dimensional. If its
dimension is n then the elements of E correspond to n-tuples of elements of
F of which there are |F|*. Thus since 16 # 8" for any n there is no subfield
of order 8.

A second possibility is to note that the elements 2, 4, 9, 14, 6, 7,12, 14 are
all primitive in the sense that their powers cover all the non-zero elements of
the field (that follows because their logarithms given in the table are relatively
prime to 15). Hence a field of order 8 cannot contain any of these elements.
Thus it must consist of {0, 1, 10, 11, 3, 5, 8, 15}. But 1 + 3 = 2 so this set is
not closed under addition and so is not a field.

Any valid argument will be accepted.

For the second part we first note that the elements a € (F - satisfy a* = a
either by direct calculation or from Fermat’s Theorem. Hence, since in fields
of characteristic 2 (¢ + b)? = a® + b%it follows thatif f(z) € F[z] we have

f(z)* = f(z"). Hence f(B) = 0 iff F(B*) =0.

The minimal polynomial for 8 ¢ F is then obtained as (z — f)(z — B*) and
we get the following list:

Element(s) = Minimal Polynomial

0 T

1 z+1

10 z+ 10

11 z+11

6, 7 22+ z+11
12,13 22 + 2 +10
2,9 2+ 11z 411
4, 14 z? 4+ 10z + 10
3.8 224+ 11z +1
5,15 2+ 10z + 1.

These are the minimal polynomials because elements outside F' cannot be
roots of polynomials in F[z] of degree 1.



SOLUTION 5

The codes are cyclic if and only if their generator polynomials divide !5 — 1.
For the first two codes we do not need to know the quotient. The division

all unseen proceeds as follows

1 0000OCO0OOOOCOT®OOO0OO0OCI1
10100110111
1 0011011100001
1 0100110111
111101011001
10100110111
10100110111
I 1060601 1011 L
1 0000O0O0OOGOOOGOOO0D01
11101010111
1101010111000 0°1
11101010111
111111001 0 01
11101010111
1011001 0 1.

So this Code A is cyclic while Code B is not. For Code C the quotient will be
the check polynomial so the calculation proceeds as follows:

0000O0O0ODOOOOO0OOOCO1
1 0000 00O 100111001
1 0011100100000 °1
1 000 00O 1100111001
1 0100101100001
1 0000 1100111001
1101011110001
1 0 0 0 1100111001
11 00111001
1 1100111001




~

NN

So the check polynomial is z® + 2° + 2* + 2% + 1. To check the words we

multiply them by the check polynomial.

1

0 00
010001

1

0
1
1
1

1

1
1
0

1

1
0

1

1 010001

1 00011
10111010001

i 1 0

1
1

1

1
1 0000OOCTUOTUO0O01

0 1 01

0 1

1

01001100

1 1011
0 1

0
1

0
0
1

0

1 010011
0 0 1
1

1 01

0

0
0 01100

1
0 0 1

1

0

0 I 1

1

1

1 01

10101000111 10110 0.

1

So the first word is a code word and the second is not.



SOLUTION 6

The generator is g(z) = [[_,(z — 2¥) and the check polynomial is h(z) =
22 o(z — 2F). These two polynomials have product g(z)h(z) = z** — 1, so
it is possible to calculate one and determine the other by division. We shall
definitions determine both by straight multiplication, starting with g(z).
book

calculations 12 x 1 4
unseen 1 6 8 x 1 8
1 14 10 15 x 1 9
1 7 9 3 10 x 1 11
1 12 10 6 14 1 x 1 15
1 3 1 4 7 13 15 x 1 7
1 4 8 3 2 1 7 6 x 1 14
1 10 2 14 9 4 9 7 15
So g(z) = 28 + 102" + 22° + 142° + 9z* + 423 + 9% + 7z + 15.
The check polynomial is found similarly.

1 5 x 1 10

1 16 9 x 1 13

1 2 13 1 x 1 3

1 1 11 15 3 x 1 6

1 7 13 7 10 10 x 1 12

1 11 2 13 5 156 & x 1 1

1 10 9 15 8 10 10 5

So the check polynomial is h(z) = z7 + 10z° + 92° + 152* + 82> + 102710z + 5
(one can check that the polynomials multiply to z*° + 1 but that has not been
asked for).

It follows that the rank of the code is 7, its minimum distance is 9.

unseen Since g(z) represents a code word a code word of weight 9 is

000000110214949715

To find a code word beginning (12 34 5 6 7) we extend this message by zeros,
unseen divide by the generator an add the resulting remainder
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