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A table of the field of order 16

g0 1 12 2 9 13 7 3 4 10 5 1411 8 6

1 2 3 45 6 7 8 9 101112 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2034 6 8101214 9 1113151 3 § 7
32 1151215109 1 2 7 4 13 1411 8
4 {5 6 7|9 1 5311153 7 2 6 10 14
5 4 7 6 1 72 6 9 12 14 11 4 ]
6 {7 4 5 2 2 4148 3 5 15 9
7 16.5 4 3 1013 4 3 15 8 1 6
8 19 10 11 12 13 14 7T 6 14 4 12 13 5
9 (18 1110131215 14 1 12 5 8 3 10
10111 8 9 14151213 2 3|11 1 5 8 2
11 (10 9 8 15141312 3 2 9 6 13
12 {13 14 15 9 1011 4 5 6 7 11
131121514 9 8§ 1110 § 4 1 9 4
14 11512 1310 11 8 9 6 7 2 2 12
15 114 13 12 11 10 9 8 7 6 5 3 113

Below diagonal a + b, on or above a x b,

0+a=a,a+a=0,0xa=0

Page 1 of 4

‘l

E4.07
SO11
ISE4.15




Let C' be the code of block length 8 obtained by extending the binary Hamming code
Ham(3) by an overall parity check bit (so that all code words of C' have even weight).

Determine the rank (dimension) k& and minimum distance d of C, and show that, with the
exception of 0 (the all zeros code word) and the 1 (the all ones code word), all code words
of C' have weight d.

[10]
Deduce that for any pair of code words u, v of C
8
u-U:ZuivizO.
i=1
[10]

Hence or otherwise show that for any 8 x k generator matrix G for C, the matrix H = GT
is a check matrix for C.

15]

You may use the following version of the Rank and Nullity Theorem without proof:

Theorem If G is a generator matrix of a code of block length n and rank m, then G7 js

a check matrix for a code of block length n. and rank n — m.

Define the term r-perfect code. Define (binary) Hamming codes and show that they are
1-perfect.

8]

Let £ be a (not necessarily linear) binary code of block length 8, show that if E can correct
all single errors, then it has at most 28 code words.

[4]
Show that there is no binary perfect code of block length 8.
[4]

Show that the code BCH(4,3), which has block length 15, rank > 3 and minimum distance
at least 7, is not r-perfect for any r.

o]
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Define the characteristic of a finite field and prove that it is a prime number.
[5]
Prove that in a field of characteristic p the equation (a + b)? = aP + bP holds for a and b.
[5]
Deduce that an element of a field of characteristic p cannot have more than one pth root.
[6]
Show that if F'is a finite field of characteristic p, then every element of F' has a pth root.

[5]

Suppose that « is a primitive element of a field of order 256, find in the form a” all the
fourth roots of a”.

[4]

Show that a field of characteristic 2 has ¢ = 2" elements for some positive integer n.
[5]

Show that the roots of 29—z, where ¢ = 2™ and the polynomial is considered as an element
of B|z], are all distinct.

If you use a criterion for distinctness of the roots you must prove it
[6]

Suppose now that F is a field of characteristic 2 such that 27 — z splits into linear factors
over F'. Show that the roots of 9 — z form a subfield of F' containing exactly g elements.

[7]
Use this method to exhibit a field with 4 elements inside GF(16).

[7]
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9.  Suppose that the triple error correcting Reed-Solomon code RS(4,3) defined over GF(16)
is being used and the following word is received:

121121121121687
calculate the syndrome polynomial.
[15]
Assuming that at most three errors have occurred find the transmitted code word.

[10]

6. Define the error locator, error evaluator, and syndrome polynomials, I(z),w(z) and s(z2),
for a received word with respect to a BCH code | BCH(k,t) (defined- using the primitive
element o) and state the fundamental relation linking these three polynomials .

[5]

Consider the BCH code, BCH (4,3) defined using the primitive element 2 of the field

GF (16). Suppose the error pattern of a received word is
100001000010000

calculate the three polynomials and check the validity of the fundamental relation in this
case.

[10]
Now suppose that the received word is
101101101101101

Calculate the syndrome polynomial, and explain why the number of bit errors must be at
least 4.

[10]
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SOLUTION 1 .

The code Ham(3) has as its check matrix the 3 x 7 matrix whose columns are
all possible non-zero binary triples. Hence it has block length 7, rank 4, and
since it can correct all single errors minimum distance at least 3. Since theren
are code words of weight 3, that is the precise minimurm distance.

Adding a check bit increases the block length to 8, and it leaves the rank
s unchanged (as the number of code words is unchanged). Since a word of
J unseen weight 3 becomes a word of weight 4, the minimum distance goes up to 4.

The zero word and the all 1s word are code words of Ham(3) and hence the
same holds for the extended zero and all 1s word. Any other word of the code
must have at least 4 1s (so that its distance from 0 is 4 and at least 4 zeros so
that its distance from the all 1s word is at least 4. Thus it must have exactly

j unseen 4 1s.

As every codeword has even weight by construction it follows immediately that
u-u = 0. It also follows immediately that for any code word u # 0,1 both
w-0 and u -1 are O (the first is the sum of 8 0s and the second is the sum
of 4 1s and 4 0s). Now suppose that both u and v # u have weight 4. They
must differ in four places because their difference is a code word # 01. Since
they both have weight 4 the number of 1s in u corresponding to 0s in v must
be exactly equal to the number of 0s in u corresponding to ls in v. Hence
/0 unssen exactly two 1s of u become 0s in v. Thus v - v is the sum of two 1s which is 0.

Now let G be any generator matrix and let H = GT. the rows of H are code

words of C and by the argument we have just given it follows that Hv =0 for
— all v € C. So C is contained in the code ¢’ with check matrix H, but by the
4 unseen theorem rank C’ = 4 = rank C and so the codes must be equal.
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SOLUTION 2

A code is T-perfect if every received word lies with Hamming distance r of
exactly one code word.

The code Ham(k) has as its check matrix a binary k x 2* — 1 matrix whose
columns are all non-zero binary k-tuples, each occurring once. A received
word has syndrome 0 or its syndrome is equal to a unique column of the
check matrix. In the first case it is a code word. In the second changing
the bit corresponding to the column equal to its syndrome produces a code
word. Changing any other bit adds the corresponding column to the syndrome,
which therefore does not become 0. That means it does not produce a code
word. Thus every non-code word is at distance 1 from a unique code word

and Ham(k) is perfect.

For block length 8 the number Ny = 1+ 8 = 9. If a code C of block length
8 can correct single errors, then the disks of Hamming radius 1 around code
words must be disjoint. So

IC|9 < 2% = 256.

Hence |C] < 256/9 < 29. Thus |{C| < 28.

The disks of radius 1, 2 and 3 about code words of block length 8 contain 9,
O+4x7=237and 37+4 x 7 x 2 = 93 words. None of these numbers exactly
divide 256 and therefore there cannot be r—perfect codes for r = 1, 2, 3. The
greatest possible distance between words in B2 is 8 and so disks of radius > 4
cannot be disjoint. Therefore there are no r—perfect codes for r > 4.

If BCH(4,3) were r-perfect,  would have to be at least 3. Let N, denote the
number of words at distance at most 7 from a code word. For an r—perfect
binary linear code C of block length 15 we must have |C| Ni = 2!5 and if the
code has rank m, then |C| = 2™. Hence N, must be 2'°~™. Now

Nr=1+15+(125)+---+(lr5>. (+)

Calculating this value for successive values of  starting with r = 3 we get

Ny = 576, Ny = 1941, N5 = 4946, . ..

None of these are powers of 2, and the last is greater than 915-3 — 212,

Therefore BCH(4,3) cannot be perfect.

2
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SOLUTION 3

The characteristic of a finite field is the smallest number of times that 1 must
be added to itself to produce 0. We denote the sum of n copies of 1 bymnol.
The distributive law implies that (m o 1)(no 1) = (mn)o1l. Let p be the
smallest positive number such that pol = 0. If p=mn withm,n <p then
0= (mol)nol. sooneofmol and n o 1 must be zero, contradicting the

minimality of p. Hence p has no proper factors and is prime..

First note that p-a = (p-1)a=0-a =0. Neaxt, observe that the binomial
theorem allows us to calculate (a + b)P:

(a + b)Y = <IJ> a’ + (p>a.”_1b + ot (P) bP.
0 1 P

But the fornula (£) = p!/(kl(p— kY1) shows that for k #0,p, (7) is @ multiple
of p. So all the middle terms of the expansion are 0. Hence (a+b)? = a? +b%.
Suppose that a? = y? = a. Then a¥ — y? = 0. If the characteristic p is odd,
then —yP = (—y)F. If it is 2. then —y? = y? = (—y)°. In either case we have
2P + (—y)* = 0 Hence (2 + (=y))P=0andsox—y= 0 orz =y. Thus a has
at most one pth root.

Consider the pth powers od the elements of F. By what has been just shown
they are all distinet and there are exactly |F| of them, hence every element of
F must occur as « pth power and so they all have pth roots.

Since square 1oots are unique and exist, there is ezactly one fourth root of any
field element in GF(256). We need to find n so that dn =7 (mod 255). The
unique answer is n = 193 (mod 255), which can be found by trial and error

or using Fuclid’s algorithm.
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SOLUTION 4

F is a vector space over its prime field B. If F is finite, then the dimension of
this space must be finite. Now every vector in a vector space of dimension n
over the field B can be represented by a coordinate sequence (Z1,...,2,) and
every such sequence determines a unique vector. So the number of vectors is
the same as the number of coordinate sequences. We know B has 2 elements.
So there are exactly 2* coordinate sequences (21,...,Tn) with entries in B.

It is possible to solve the second part using a book work criterion involving the
derivative of the polynomial. Here is a neater direct solution.

Let o be a root of ¥ —ax. Then (z —a)? = 29— af = 27— since ¢ is a power

of the characteristic 2. Thus

t—z=(2"-a)—(2—a)
=(z—a)—(z—a)

= (z —a)((z—a)™ — 1),

Since a does not divide the second term, it is not a multiple root of % — z.

By the second part there are eractly q roots, so the number of elements is
correct. We must show that the set of roots is closed under addition, multipli-
cation. and laking inverses (negatives is unnecessary in characteristic 2). If
of = o and 39 = 3 then (afB)? = o987 = aff and (¢™!)! = (a?)"! = a”!. For
addition we use the result of question 3 and find that (a+53)? = a?+47 = a+pf.
So closure holds and the set forms a field.

The roots of a* — x in GF(16) are 0, 1, 10, 11 (by inspection. So by the
previous vesult. they form a field of order 4.
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SOLUTION 5
Received Word: 121121121121687
b})/ Syndrome Calculation:
2 b
dect] 1 211 211 2 1 1 2 168 17
2: 1 0 1 3 4 9 10 15 6 13 1 3 0 8 14
4: 1 6 01 6 01 6 0 1 6 0 6 9 8
8: 1 10 7 11 12 5 2 11 15 4 9 6 4 3 6
9: 1 11 4 14 1 8 6 6 5 7 15 11 3 10 11
11: 1 9 4 6 10 0 1 9 4 6 10 0 6 0 7
15: 1 13 5 0 2 6 8§ 7 7T 7T 4 15 5 9 13
Syndrome Polynomial: 137 11 6 8 14
Euclid’s Algorithm:
/0 Seey 00 0 0|1 00 00 0 0[00 0 1]/0 0 0 0
00 0 0|O0O13 716 81400 0 0|0 0 0 1
00 9 00135 47 3 0100 0 1710 0 9 O
00 0 1]0 0215111 144}00 0 1]0 0 9 1
0010 0|0 05 17 0140010 0101210 1
00 0140 00139 612001014 |0 12 9 15
001 0]0 00109 214101 6 119 5 4 1
00 01210 00 01 1 8101 3 6!9 31210

Error Locator: 9 3 12 10.
Horner’s scheme: (only rows corresponding to roots of locator shown)

9 3 12 10
2: 9 8 5 0
4: 9 12 14 0
8: 9 4 7 O

10 tnsSecs

Roots: 24 8

Error Locations: 14 13 12

Error Evaluator/z: 118

Evaluated: 2: 14, 4: 5,8: 15

Derivative of Error Locator: 2: 3, 4: 2,8: 6
Error Values: 13 14 14

Corrected Word:121215121121121687



SOLUTION 6
Transmitted Codeword c(z) =cna™+ -+ co
Received Word : d(z) =dpz™+ -+ do
Error Word cd(z)—c(z)=e(z) =emz™ +---+ €
Error Positions : M = {i:e # 0},
: s=|M]<t
Error Locator Polynomial l(z)= [ (1 —e'z)
ieM
’{book This has roots : {a~t i€ M} o
Error Evaluator Polynomial : wz)= 3 el JI (1—-alz2)
ieM  jEM\
Syndromes : d(af) = e(a’) = S;fori=1,...,2t
2t
Syndrome Polynomial : s(z) =3, S;z+1
i=1
Fundamental Equation : I(2)s5(z) = w(z) (mod 2%t).

Error Pattern: 1000010000100 0 0. Syndrome Calculation:

1 0 00 O 1 00 O 010 00O
2: 1 2 48 9 10 133 6 12 00 000
8: 1 815 5 3 0 00 0 018 15 5 3
11: 1 11 10 1 11 11 10 1 11 10 0 0 O O O

Thus S; =0 and so S, = S5 = 0. S35 =3 andso 56 =32 =5, S5 = 0.
Syndrome Polynomial: s(z) = 5z° + 32z2. The error locations are 14, 9 and 4.
Hence the error locator is

(1—14z)(1 —92)(1 —42) =32° + 1.
The error evaluator is

14(1 — 92)(1 — 42) + 9(1 — 142)(1 — 42) + 4(1 — 14z)(1 ~ 92) = 34

/ () unseen Verifying the fundamental equation gives:

I(2)s(2) = (32° 4 1)(52° + 32%) = 152° + 32* = w(2) (mod 2°).

Received word: 101101101101101.
Syndrome calculation:

1 0 1 1 0 1 1 0 1 1 0 11 0 1
2: 1 9 5 11 15 6 13 3 7 15 7 15 6 12 0
1 0
1 1

8: 81412410710711141253
11: 11111110011111111001111

A The syndrome polynomial is s(z) = 11z%. This divides 28 and I(2)s(2) will be
: a multiple of z* for any polynomial [ (z). So it is impossible for the fundamenal
% unseen equation to hold. Hence there must be more than 3 errors.




