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Let D be the binary (7,4)~code given by the check matrix

o = O
= O O

1
1
0

O O

0
0
1

o O

1
0
0

and let C be the shortened code obtained from D by removing the final zero from
all code words that end in zero. Thus u € C if and only if (u,0) € D.

Construct (with justification) generator and check matrices for C.
You should state but need not prove the relation between standard form generator
and check matrices of a binary linear code.

Using your check matrix construct (with justification) a syndrome/coset leader de-
coding table for C. Where there is a choice for the coset leader indicate all possible
values.

Let C be a (not necessarily binary) linear (n, m)-code and let C’ be the punctured
code obtained by deleting a particular position from all the codewords of C. Show
that if C' has minimum distance d > 1, then C' is an (n — 1,m)—co‘de with minimum
distance d' > d — 1.

Hence or otherwise show that the minimum distance of any linear (n,m)-code C is
at most 7 —m + 1. This is the Singleton bound. If the minimum distance is exactly
equal to n — m + 1 we shall say the code meets the Singleton bound.

Define an r-perfect code.

Show that the binary Hamming code Ham(4) is 1-perfect, but does not meet the
Singleton bound.

Show that the triple error correcting Reed-Solomon code RS(4,3) considered as a
code over GF(16) meets the Singleton bound but is not perfect.
You may assume that RS(4,3) corrects 3 errors and that there are ezactly 1559476 =
4 x 389869 words at distance < 3 from a code word of RS(4,3).

Explain how the field table of the field of order 16 below is constructed, emphasizing
the properties of the polynomial z* 4+ 2® + 1 that ensure that the element 2 is a
primitive element, and explaining how the ‘logarithms’ at the head of the table can
be used to multiply and find inverses in the field.

Prove that every finite field contains a primitive element.
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Describe Euclid’s algorithm in its four column version proving that it determines
the highest common factor of its input.

Let t(z) be an irreducible binary polynomial and let s(z) be a non-zero binary poly-
nomial such that deg(s(z)) < deg(¢(z)). Stating clearly any properties of Euclid’s
algorithm you require, show how that algorithm can be used to determine an inverse
polynomial 7(z) of s(z) mod #(z) that is a polynomial r(z) such that r(z)s(z) =1
mod t(z).

Illustrate your method by finding an inverse of 8 + z* + z® + z + 1 mod Ttz +1
(you may assume that " + « + 1 is irreducible).

Explain how the binary, {-error correcting BCH code BCH(k,t) is constructed by
extending the check matrix of the Hamming code Ham(k), describing the two check
matrices Hy; and V,,; and showing that they define the same code.

Use these matrices and the properties of check matrices in general and Vandermonde
type matrices in particular (which you should state, but need not prove) to give
estimates of the parameters of the codes.

Suppose now that the check matrix of the Hamming code Hj is written in the form

111111 11000O0TO0CTO0OO0
111 100001111000
1100 11001100110
1 01010101010 101

Construct the check matrix Hy» of the code BCH(4,2).

The 4-error correcting code RS(4,4) based on the primitive element 2 is used to
transmit a message. One received word is

w=(1, 10, 3, 4, 4, 2, 2, 13, 15, 3, 6, 7, 1, 1, 0).

The first 7 syndromes of Sy, ..., Sy of u are 10, 8,12, 4, 7,0 1.
Calculate the remaining syndromes Ss.
Using the syndromes calculate the error locator and evaluator for the word.

Verify that the error locator has roots 6, 11, 12, 15 and calculate a code word at
distance < 4 from u.
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log0 1 12 2 9 13 7 3 4 10 5 14 11 8 6

1 2 3 45 6 7 8 9 1011 12 13 14 15
11 2 3 4 5 7 8 9 10 11 12 13 14 15
2 (314 6 8 9 11 13 15 1 3 5 7
312 1]5 1 2 7 4 13 14 11 8
4 5 6 7 153 7 2 6 10 14
5104 7 6 6 9 12 14 11 4 1
6 |7 4 5 4 14 8 3 5 15 9
716 5 4 13 4 3 15 8 1 6
8 |9 10 7 6 14 4 12 13 5
9 |8 11 111412 5 8 1 3 10
10 |11 8 9 14 15 12 13 2 5 15 8 2
1110 9 8§ 15 14 13 12 3 9 2 6 13
12 (13 14 15 8 9 10 11 4 6 10 7 11
1312 1514 9 8 11 10 5 117 9 4
14 15 12 13 10 11 8 9 6 2 3]2 12
15 (14 13 12 1110 9 8 7 3 2 113

(© University of London 2001

Below diagonal a 4 b, on or above a X b,

0+a=a,a+e¢=0,0xa=0

— END —
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SOLUTION 1

We use the fact that the standard form matrix (i) is a generator for a binary
code if and only if the standard form matrix (A, J)) is a check matrix for that
code.

Thus a generator matrix for D is

100010 0\
01000 1 0
0010110
000100 1

A code word of D is the sum of a subset of the columns of this matrix and it
will end in O iff that set does not include the last column. Hence a generator
matrix G for C, and the corresponding check matrix H are given by

T

10 000100
G = 01|, H=({101 0 1 0
11 01 100 1

O O =
o = O

0
0
1

o O o

The syndromes of single errors are the columns of H and ambiguities oc-
cur only if the same column occurs several times Thus the first part of the
syndrome/coset leader table has the following form (the syndromes and error
patterns are written as rows for convenience):

syndr. error

000 000000

001 010000 or 000001
010 100000 or 000010
100 000100

011 001000

That exhausts all the columns of H but there are still three syndromes left.
These we represent as sums of two columns of H. It is helpful to note, that the
only column of H with a 1 in the first row is the 4th. Thus an error producing
syndrome starting with 1 must include have a 1 in its 4th position. An error
word abclef will produce the syndrome lyz iff the error word abcOe f produces
the syndrome Oyz. Since all the outstanding syndromes do start with 1 this
makes it straightforward to determine all the corresponding error patterns of
weight 2.

syndr. error

101 010100 or 000101

110 100100 or 000110

111 001100

G
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SOLUTION 2

Since the minimum distance of C is > 1 two distinct code words of C' cannot
yield the same word when a single symbol is deleted. Thus C” has exactly the
same number of code words as C. It is also obviously still linear. Since the
number of code words of a linear code on ¢ symbols of rank k is ¢¥, it follows
that C' has the same rank as C.

Let v and v be two code words of C' and v’ and v’ the corresponding code
words of C’. Then if the deleted symbols of u and v are the same we have
d(u',v'") = d(u,v) and otherwise d(u',v') = d(u,v) — 1. Hence the minimum
distance of C’is d — 1 if there are two code words u, v of C with d(u,v) = d
and different symbols in the punctured location. Otherwise the minimum
distance of (" is d.

Now we puncture the code repeatedly until the minimum distance is 1 that
happens at the latest when the block length equals the rank m of C' which
would occur after n—m steps. At each step the minimum distance has dropped
by at most 1 so the original minimum distance is at most 1+n—m as claimed.

A code of block length n is r-perfect if to every word v of length n there is
exactly one code word u with d(u,v) <r.

The parameters of the code Ham(4) are 15,11, 3 since its check matrix Hy has
as its columns all non-zero binary words of length 4. It is perfect single-error
correcting because for any word v of length 15, we have either Hyv = 0 in
which case v € Ham(4) or Hyv is a unique column of Hy. Correcting the
corresponding bit of v will then produce a code word and changing any other
or none will not do so. This also proves that the minimum distance of Ham(4)
is 3 rather than 5 which would correspond to the Singleton bound.

The code RS(4) has as its generator polynomial [I5_,(z — o), where «
is a primitive element of GF(16). Since its code words are represented by
polynomials of degree 14 it has block length 15 and rank 14 — 6 +1 = 9
Since it can correct three errors it has minimum distance at least 7. As
7 =15 -9 +1 the minimum distance cannot be greater and the code meets
the Singleton bound. If it is perfect then | RS(4,3)| x 1559476 = 16'°. However
|RS(4,3)] = 16° which would imply that 1559476 is a power of 16 which is
not the case. so the code is not perfect.

I
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SOLUTION 3

The number n represents its binary 4-tuple a, b, ¢, d, which in turn represents
the polynomial az® + bz®> + ¢z + d. Thus 13 ~ 1,1,0,1 ~ 22+ 2?4 1.
Addition (the lower half of the table) is ordinary addition over B (i.e. XOR).
In particular o + o = 0 for any «, so this does not appear in the table.
Multiplication (the upper half of the table) is multiplication in B[z], followed
if necessary, by taking the remainder after division by z* + 2° + 1.

The fact that 2 which corresponds to z is a primitive root is equivalent to the
statement that 2% + 2%+ 1 divides 2'® —1 but not 2*¥ — 1 for any smaller power
k. Then the powers 2°, ..., 21 must all be distinct and so the cover all the
non-zero elements of the field. These powers are the logarithms at the head
of the table. To multiply field elements « and § we represent them as powers
of 2, say 2¢ and 2. Then of = 2¥+¢. Since 215 = 1 we can reduce k + £
mod 15. Then the product is the element with that value as its logarithm. In

particular, o=t = 215-F

THEOREM. Every finite field has a primitive element.

We first prove a lemma:

LEMMA. If 8,7 € F and ord(8) = m and ord(y) = n, and their highest
common factor (m,n) = 1, then ord(Bv) = mn.

Proof. Certainly (8y)™ = 1. Suppose (3v)¥ = 1. Then p*" = BEnykn —
(B7)* = 1. Hence m divides kn. So n divides km. Now m and n have
no prime factors in common, so m divides kn only if it divides k. Similarly
4™ =1 and n divides km only if it divides k. So both m and n divide k.
Thus their least common multiple, mn divides k. O

Proof. Let py,...,p; be the prime factors of ¢ — 1 and let s; be the highest
power of p; that divides the order of some element +; of I'. By taking v; to
a suitable power we may assume that ord(v;) = s;. Then o = v;--- v has
order s;y---s; = u by thelemma. Now by the construction of w any 8 € F
has order dividing u. So the non-zero elements of F' are all roots of z* — 1.
Hence ¢ — 1 < u. But each s; is a factor of ¢ —1 (by Lemma la), and they are
powers of distinct primes. Therefore u divides ¢ — 1. Thus they are equal.

O
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SOLUTION 4

ALGORITHM FEuclid’s Algorithm.

Step 1. Set up a table with 4 columns (5 if you count the row number) headed
Q, R, U, V. Fill in the first two rows (numbers —1 and 0) as follows:

ROW Q R U \%
-1 - a 1 0
0 - b 0 1

Step 2. Calculate the Q and R entries for row 1 by dividing a by b: a = q;b+7;.
The U entry is 1 and the V entry is —q.

1 q1 1 up =1 V1 = —q1

Note that r; = la 4+ (—¢1)b.
Step 3. Suppose we have calculated up to row k& and the last two rows are as
follows

k—1 Qr—1 Tk—1 Ug—1 Vk—1
k qk Tk Ug Vg

If . = 0 Stop.

Otherwise divide r_q by 72 751 = Qr1Th + The1-

That gives the Q and R entries of row & + 1.

Using the Q entry just calculated, put wug4r = ugp—1 — Qr41ur and
Vk41 == Vk—1 — Qk+1Vk-

PROPOSITION. The last non-zero element of the R-column is a highest com-
mon factor of a and b.

Proof. Let the last non-zero element be r,. Then r,_; = ¢op1rn + 0. So
P | Thoie Next, 7p_2 = @uTa—1 + 7s. Since r,, divides both summands on the
right hand side it divides r,_5. Now suppose we have shown r, divides ryy,
and 7. As Tu_1 = Qeg17Tk + Try1, it follows in the same way that r, divides
ri—1. Finally, r, divides ro = b and r_; = a. So r, is a common factor of a

and b.

Conversely, it will follow from (b) that if ¢ | @ and ¢ | b, then ¢ | r, = u,a-+v,b.
So 7, is indeed (a,b). O
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Since t(z) is irreducible and cannot divide s(z), the highest common factor of
the two polynomials must be a non-zero constant, and the only binary non-
zero constant is 1. So the last non-zero entry in the R column must be 1. Now
for each row of the table the entries satisfy 7y = auy + bvg. Therefore in the
last row we have 1 = ¢(z)ug(x) + s(z)vg(z). That implies that vi(z)s(z) = 1
mod t(z). So vy, is the required polynomial r(z).

We execute Euclid’s algorithm with the two given polynomials below

Q R U v
10000011 1 0
1011011 0 1

10/ 110101 1 10
11 100 11 111
1101 1/10110{100001

The final row shows that ($5 + 1)(3:6 +zt+ a4+ 1) =1modaz"+z+1.
So 2° 4+ 1 is the required polynomial.
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SOLUTION 5

We first consider the columns of the check matrix of Ham(k) as the binary
representation of the integers 1, ..., 2¥ — 1, which in turn we take to represent
the non-zero elements of GF(2%). Using this interpretation, the check matrix
Vit extends the column « to

the check matrix Hy, is obtained by deleting the rows corresponding to even
powers of a.

PROPOSITION. Vy, is a check matrix for the same code as Hy ;.

Proof. We need only show that a binary word u of length 2¥ — 1 satisfying

Hy,u = 0 also satisfies Vi,u = 0. Write the Hamming check matrix as
aq,...,a_;. Then the condition Hyu = 0 is equivalent to

2k 1

Z au, = for all odd s < 2t.

r=1 r=1
But since u, = 0, 1 we have uf = U, SO

2F_1

2s .
E o u, =0,
r=1

proving that Vi ,u = 0.

The block length of BCH(k, ¢ is the number of columns in either of its check
matrices, 2F — 1. Since each binary row of a check matrix can only reduce the
rank of a code by at most one using H}; we see that the rank of BCH(k,t) is
at least 28 — 1 — kt.
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Noting that each (2t x 2t)-submatrix of V;; considered over GF(2¥) is a

Vandermonde matrix with non-zero determinant, we see that no 2¢ columns

of Vi, are linearly dependent, even when the are considered as binary vectors.
seen 4 It follows that the code has minimum distance at least 2¢ 4 1.

Writing the matrix over GF(16) it takes the form

(151413121110 9 8 7 6 5 4 3 2 1)

Adding the cubes beneath it gives the matrix

15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1
( 8 5 8 3 1 13 5 15 5 3 15 15 8 1)'
unseen In binary this is
in this
col. order 1 111111 1000O0O0O0O0
8 111100 001 1 1 1000
Il 1 0011001100110
1 01 0101010101001
1 606100 0 0O010O011T10@0
01 000O0OO0OCT1TT1T1O01100
060010010101 T11O00O0
610 1 1 1 1 1 1 1 11101



SOLUTION 6

Received Word:
110 3 4422131536 7110

Syndrome Calculation using Horner’s Scheme (the candidate need only calcu-
late the last row):

1 10 3 4 4 2 2 13 15 3 6 7 1 1 O
2 : 1 8 10 9 15 5 8 4 7 13 5 13 2 5 10
4: 1 14 9 11 3 14 8 6 14 9 9 8 10 2 8
8 : 1 2 10 2 13 14 15 &8 0 3 7 13 13 13 12
9: 1 3 1 13 5 4 13 12 7 14 5 1 8 6 4
11 : 1 1 8 10 5 14 4 10 14 5 10 6 9 4 7
15 1 5 2 3 12 9 & 8 10 1 9 13 5 0 O
7: 1 13 11 7 8 8 8 7 3 10 2 9 12 14 1
14 : 1 4 9 7 5 6 13 4 5 7 7 6 14 3 11

unseen 5  The syndromes are the entries in the final column.
Syndrome Polynomial: 11107 4 12 8 10
Euclid’s Algorithm:

000 0 0/1 0 0OOO OO O O0OO0OTO0OTUOT11TI00 00O
000 0 0/011 1 07 412 81000 0 0 0j0 0 O O 1
00010 0/010 0 43 5 611 000 0 O 1|0 0 010 O
000 0110 011 40 215 5 100 0 0 1|0 O O 10 11
000 1 00 0 5 0511 9 910000 0 1 00 01011 1
000 0 90 0 0155 0 315 3|00 0 1 9|0 010 7 4
00012 0/0 0 010015 4 8 10012 &8 1|0 515 8§ 11
000 O 90 0 0 0615 6 2 30012 1150 5 3 5 4
00014 0[0 0 0 0915 6 4 3|07 1413 9|4 11 14 13 4
000 0150 0 0 001215 311|107 5 2101410 6 12 10

The third column is optional. The last entry in the second column is the error
evaluator (it is the first time the entry in this column drops below degree 4).
unseen 10 The last entry in the final column is the error locator.

-



Verification of the zeros of the error locator and calculation of derivatives at

the zeros:

4 10 6 12 10
6 : 4 11 14 3 0

4 10 0 3
11: 4 13 4 11 0

4 10 5 7
12 4 8 2 13 0

4 10 7 2
15: 4 4 8 9 0

4 10 10 11

The entries in the last column are the values of the error locator and as ex-
pected they are all zero. The final entries of the shorter rows are the values
of derivative of the error locator (which could also be found by differentiating

unseen and calculating directly). Roots: 6 11 12 15. Corresponding error locations:
chk. zeros 21019

2 Error Evaluator:

calc. error 12 15 3 11

vals. 6 6: 12 12 0 11

codeword 1m: 12 6 11 1

2 12: 12 9 11 2

15: 12 4 13 15

Error Values (error evaluator/derivative of error locator): 14 14 1 2

Corrected Word:

110 3 410 0 21315 3 6 715 0 0.



