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NOTATION

The following notation is used throughout this paper:
R: The set of real numbers.

Z: The set of integers.

Z.,: The set of positive integers.

C: The set of complex numbers.

N: The set of natural numbers.

2(S): The power set of set S.
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The Questions

1. [Compulsory]

a) For the sets 7 = {1,2}, S» = {2,3}, list the elements of

i) S1USs,
ii) S1M8s,
iii) S — S5,
iv) 81 x 8,3,
v) P(51)-

[7]
b) Consider the relation R = {(1,2),(2,3),(3,4)} on the set R.
i) Let R be a function from A to B. Find the smallest cardinality A and B
for this to be possible.
ii) List the elements of R - R.
iii) List the elements of the transitive closure of R.
iv) Draw the digraph of R.
v) How many functions are there from the set R to itself?
[9]
c) Express each of the following statements using appropriate logical syntax. You
should take the set of complex numbers as the universe of discourse, and make
use of a predicate P(x), meaning ‘x is a real number’.
i) Every real number, when squared, gives a non-negative real number.
ii) Every quadratic equation with complex coefficients has two complex
roots.
iii) There are two distinct real numbers that are solutions to x> — 1 = 0.
(91
d) i) Consider two functions f(x) and g(x). f(x) is known to be ©(x?)

and g(x) is known to be ©(x). Find functions p(x) and g(x) such that
fx)+g(x) is O(p(x)) and f(x)g(x) is O(g(x)).

Discrete Mathematics and Computational Complexity

28



ii) Write some pseudo-code for a function funi(x) that has worst-case
execution time O(g(x)) and for a function fun?2(x) that has worst-case
execution time O(f(x)).

iii) Show that if r(x) is @(s(x)) then s(x) is @ (r(x)).
[9]
e) Write some pseudo-code for a function whose worst-case execution time satis-

fies f(n) =3f(n/2)+n whenever n is an even number. Find a big-O expression
for the worst-case execution time of this function.

[6]
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[Compulsory]

This question is concerned with the reachabiliry decision problem, which can be ex-
pressed as follows. Given a relation R on a set A and two elements @) € A and a; € A, is
the following logical condition true? 3n((a;,a2) € R"), where universe of discourse is
7. Figure 2.1 illustrates some pseudo-code for solving this decision problem.

a) Consider the two digraphs shown in Figure 2.2(a) and (b). For each case, an-
swer the corresponding reachability instance, and calculate how many times the
function shown in Figure 2.1 is called (including the initial call).

[14]

b) Consider |R| as the size of a reachability instance, and assume that every atomic
operation in the algorithm shown in Figure 2.1 takes ©(1) time. Is this algo-
rithm exponential time or polynomial time? Justify your answer.

[13]

c) Suggest an improved version of this algorithm, write and explain the pseudo-
code, and discuss whether this version is polynomial time.

[13]

reach( R, aj, a2)
begin
if (a),a>) € R then
result := true
else begin
result := false
for every a such that (a;,a) € R
begin
if reach( R, a, a; ) then
result := true
end
end
end

Figure 2.1 An algorithm for solving the reachability decision problem
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(b) Digraph 2

Figure 2.2 Two digraphs
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b)

Consider the function f: A — C defined by f(x) = % where j=+/—1.

i)

ii)

iii)

i)

it)

If A =R — K, what is the smallest K, in the sense that if A = R — K’
then K € K'?

Show that for this choice of K, the function f is an injection.

Show that f is not a surjection for this choice of K.

[10]

Show that the transitive closure of a relation R is equal to its connec-
tivity relation R*. You may assume that for an arbitrary relation Q, (i)
Q is transitive iff Q" is transitive for all positive integers n, (ii) Q is
transitive iff Q" C Q for all positive integers 7.

Consider the function g : § — § defined by g(x) = |/x|. For § =
{1,2,...,16}, list the elements of g- g and the transitive closure g" of g.

[20]

Discrete Mathematics and Computational Complexity

6/8



4. This question uses predicate logic to describe the behaviour of the simple circuit shown
in Figure 4.1. Let the universe of discourse, corresponding to the set of clock periods,
be N. Each wire i € {1,2} is associated with a predicate P;(z). A logic-0 is present on a
wire at a particular cycle ¢ if the corresponding proposition P;(z) is false, and a logic-1
is present if the corresponding proposition Fi(t) is true.

An axiom describing the function of the D-type flip-flop is given in equation (4.1).

=P (0)AV(Pi(t+ 1) — Pa(1)). 4.1)

a) Write a corresponding axiom for the inverter.
[4]
b) Write a proposition corresponding to the English sentence ‘the inverter output

at cycle 1 will have the opposite logical value to the inverter output at cycle 0’

(5]
c) From the inverter and the flip-flop axioms, formally derive your proposition as
conclusion. State the rule of inference used at each step in your working.
[15]
d) Show further that the conclusion Py(1) can be reached. State the rule of rule of
inference used at each step in your working.
[6]

1D Q

T> cl

Figure 4.1 A circuit

Wire 1 Wire 2
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5. This question is about multiplying two n-bit numbers, where 7 is a power of two, using
only addition and shift arithmetic operations, each of which takes @(n) time for n bits.
We shall use the operator ‘<<’ to denote left-shift, i.e. x << y means ‘x left-shifted by
y bits’. We shall also represent n-bit numbers by binary arrays of length n, where the
most-sigificant bit is element n — 1 and the least significant bit is element 0.

a) A possible multiplication algorithm is shown in Figure 5.1. Derive a big-@
expression for the execution time of this algorithm.

[7]
b) Let us denote the least-significant n/2 bits of A by Az and the most-significant
1/2 bits by Ay, and similarly for B, so that A = 22Ay +Ap and B=2"2By +
B;. Notice that AB=2"(AyBy ) +2"* {(AL + Ay )(BL +Bu) —AuBy — A BL} +
A B;. Use this observation to propose a recursive multiplication algorithm.

[8]
c) State the Master Theorem.
[8]
d) Derive a big-O expression for the recursive execution time, and comment on
the result.
[7.]
multiply( binary A[n], binary B[n] )
begin
result :=0

for i :=n— 1 downto 0
if(Ali] = 1) then
result := (result << 1)+ B
else
result := (result << 1)
end

Figure 5.1 An algorithm for multiplying two numbers
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