Paper Number(s): E3.16

ISE3.23

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

EXAMINATIONS 2002

EEE/ISE PART II/IV: M.Eng., B.Eng. and ACGI

ARTIFICIAL INTELLIGENCE

Thursday, 9 May 10:00 am

There are SIX questions on this paper.

Answer FOUR questions.

Time allowed: 3:00 hours

Examiners responsible:

First Marker(s): Pitt,J. V.

Second Marker(s): Shanahan,M.P.

Special Information for Invigilators:

None.

Information for Candidates:

The Prolog General Graph Search Program (GGS)

/* search(+Paths, ?Path) succeeds when
Path is an extension of some path in Paths to a goal
*/

search(Paths, [Node|Path]) :-
choose([Node|Path], Paths, _),
state_of (Node, State),
goal_state(State).

search(Paths, SolnPath) :-
choose(Path, Paths, OtherPaths),
one_step_extensions(Path, NewPaths),
add_to_paths{ NewPaths, OtherPaths, AllPaths),
search(AllPaths, SolnPath).

E3.16/ISE3.23 Page 1 of 5

1

(@)

(b)

(@)

(b)

(c)

(d)

Compare and contrast four algorithms known to you for uninformed search
of a problem space.

[12]

Consider the General Graph Search program (GGS).

For each of the algorithms in part (a), specify, in Prolog or other declarative
notation, the relations for choose and add_to_paths. Ensure that any
other relations required are also specified.

[8]

Define what is meant by an admissible heuristic and a monotonic function.
Explain why admissibility and monotonicity are important in A* search.
Explain how the path cost function could be made monotonic if the heuristic
function was non-monotonic.

(4]

Give two admissible heuristics for path searching in grid-like mazes, and
explain why they are admissible.

(4]

In general, given two admissible heuristics for an A* search, explain why one
may be more ‘efficient’ then the other.

(6]

Explain why, although there may be several solutions to a problem, the first
solution found by A* search must be optimal.

[6]

E3.16/ISE3.23 Page 2 of 5

3 Consider the following grid maze, consisting of multiple T-junctions and a robot
that is capable of following either the left wall or the right wall, from the start
location to any of the locations marked IN (/<N<8):

I3 17 I5 I8

11

2

(a) Give a formal definition of a graph, and illustrate your answer using the maze
shown.

[4]

(b) Give an inductive definition of the paths in the graph using the definition in
part (a). llustrate your answer using the maze shown.

(4]

(c) Given a pair of state transformers left and right with obvious effects, give an
inductive definition of a graph based on the root node and the state
transformers.

[4]

(d) Hence, or otherwise, give an alternative definition for the paths in a graph.
Show how the General Graph Search program (GGS) constructs these paths

using breadth first and depth first search. Use the example maze to illustrate
your answer.

(8]

E3.16/ISE3.23 Page 3 of 5

(a)

(b)

(©)

(d)

What is meant by a conceptualization in Knowledge Representation.
Give different ways in which colour could be conceptualized, for example in
a blocks world with differently coloured blocks.

(3]

Define what is meant by unification in logic programming.
Briefly describe a unification algorithm for two terms.

[4]

Describe the inference rule resolution, and show that it is sound.

(4]

Consider the following simple map of cities connected by motorways.

Manchester

6 Birmingham

Me62

Bristol

London

(i) Define the facts shown using a relation connects only;

(ii) Define rules for the relation accessible which is true if there is a route
(by motorway or sequence of motorways) from one city to another;

(iii) Show the facts and the rules of parts d(i) and d(ii) as Horn clauses (with
the rules implicitly universally quantified);

(iv) Using unification and resolution, show that Manchester is accessible
from London.

[9]

E3.16/ISE3.23 Page 4 of 5

5 (a) Explain why (a — c) is a correct inference from (a = (b —c)) and b.

(2]

(b) Prove that (a = (b — ¢)) <> ((a A b) = ¢). Use the KE calculus and annotate
the steps in your proof.
Explain the relation between this proof, the ‘proves’ relation F between a set
of formulas, and proof using the KE calculus in general.
[10]

(c) If a football team wins a match, then it does not lose or draw that match, and
vice versa.
Formalize this relationship in propositional logic.
Use this to show that if a team didn’t lose, then it either won or drew. Use the
KE calculus and annotate the steps in your proof.

(8]

6 (a) Draw the BDI (Beliefs-Desires-Intentions) architecture for a ‘rational agent’.
State the principal function of each component, and briefly indicate how they
interact with each other during one cycle of the interpreter execution cycle.

(4]

(b) For a BDI agent as described in part (a), give a logical formulation and an

English description of:

(i) axiom schemas combining the beliefs and desires of a BDI agent that
trigger the intention to perform an inform, query, or command
communicative act (in which case the agent is the sender of a message);

(ii) axiom schemas for the change in belief state of a BDI agent which
‘observes’ an inform, query or command communicative act (in which
case the agent is the receiver of the message).

(4]

(c) Tlustrate how the axioms of two agents interact when the first agent wants
(desires) to know the truth of some proposition p and believes that the second
agent knows whether or not p is true. The second agent believes p is not true.
Indicate how the desires (goals) of each agent are discharged.

(4]

(d) Specify, in an appropriate notation, a contract net protocol for one agent (the
‘client’) wanting to allocate a task to one of a group of other agents (the
‘workers’).

Specify rules which the client and worker agents should observe when
negotiating a contract using this protocol.

(8]

E3.16/ISE3.23 Page 5 of 5 [END]

E3.16 Artificial Intelligence Dr. .V Pitt page 1 of 14

E3.16 Artificial Intelligence

Examiners Dr J. V. Pitt

First Marker Dr J. V. Pitt

Second Marker Dr. M. P. Shanahan

There are SI>

- Jc/\ V»"\ /

MO -

s

/\,\o\u’k(

E3.16 Artificial Intelligence Dr. J.V.Pitt page 2 of 14

ANSWER 1

MARKING SCHEME
{ay 12 marks:
{h) 8 marks:

(a)

method time space optimal | complete
compl | compl

depth first expand next node from O(”*m) | O(b*m) | no no
deepest level

breadth first expand next node from O(brd) | O(b"d) | yes yes
shallowest level

uniform cost expand next node with the | O(b”rd) | O(b”d) | yes yes
‘cheapest’ cost so far

beam only keep beam width O(w*d) | O(w*m | no no
paths of the search space

(b)

depth first

choose(H, [HIT] T).
append(New, Other, All).
breadth first
choose(H, [HIT] T).
append(Other, New, All).
uniform cost
choose(H, [HIT] T).
insert_in_order(New, Other, All)
insert_in_order([], L, L).
insert_in_order([HIT], Other, All) :-
insert(H, Other, Temp)
insert_in_order(T, Temp, All).
insert(H, L, HinL.) :-
append(Front, [NiBack], L),
cost_of(H, Ch), cost_of(N, Cn),
Ch < Cn.

insert(H, L, HinLL) :-
append(L, [H], HinL).

E3.16 Artificial Intelligence Dr. J.V.Pitt

beam search
choose(H, [HIT] T).

insert_in_order(New, Other, All)
restrict(All, BeamWidth, RestrictedAll)

restrict(All, BeamWidth, All) :-
length(All, Lall),
Lall =< BeamWidth.

restrict(All, BeamWidth, RestAll) :-
append(Fr, _, RestAll),
length(Fr, Beamwidth).

page 3 of 14

E3.16 Artificial Intelligence Dr. J.V.Pitt page 4 of 14

ANSWER 2

MARKING SCHEME
{ay 4 marks:
{h) 4 marks:
{¢) 6 marks:
{d) 6 marks:

(a)

admissible: never over-estimates

monotonic: uniformly increasing or decreasing.

can't guarantee optimality if g(succ(n)) + h(succ(n)) < g(n) + h(n)
use pathmax equation f(succ(n)) = max(f(n), f(succ(n))

(b)
straight line simple pythag
manhattan, x horizontal + y vertical, must move at least x+y grids

(c)

Let * be the actual cost of getting to goal node G.

Then A* algorithm
expands all nodes such that g(n) + h(n) < f*
expands some nodes such that g(n) + h(n) = f*
expands _no_ nodes such that g(n) + h(n) > f*

This means A* may expand some nodes for which g(n) + h(n) <= f*, when the actual
cost of getting to the goal from n is > f*

For these nodes where actual(n) > f* we want the following inequality to hold:
f* < f(n) + g(n) < actual(n)
i.e we still dont overestimate

If we could create 'histogram’ by mapping nodes onto costs;

we see that f* expands all those to the left of the bar, some of those on the bar, and
none of those to the right of the bar.
A more ‘efficient’ heuristic will map more of the nodes to the right of the bar.

E3.16 Artificial Intelligence

(c)

Dr. J.V.Pitt

Optimal solution has cost f* to get to optimal goal G
Suppose A* search returns path to sub-optimal goal G’

We show that this is impossible

f(G”)

g(G") +h(G’)
g(G)+0
= gG)

If G’ is sub-optimal then g(G’) > f*

G’ is a goal state, we require h to be 0

Now consider a node n on path to optimal solution G

- n0 (start)
/N
/ \
£* n G’
/
/
- G
Then: f* > f(n) monotonicity

f(n) > (G otherwise A* expands n first
f* > (G transitivity of 3
* > g(G) a contradiction

So either G” was optimal or A* does not return a sub-optimal solution.

page 5 of 14

E3.16 Artificial Intelligence Dr. J.V.Pitt page 6 of 14

ANSWER 3

MARKING SCHEME
{ay 4 marks:
(by 4 marks:
{cy 4 marks:
(dy 8 marks:

(a)
G =< N, R > where
N is the nodes
R is the incidence relation

N = start, 11, 12,13, 14, 14, 16,17, 18
R = { (start,11), (start,14), (11,12), (11,13), (14,15), (14,16), (15,17), (15,18) }

(b)

PG =i 0\J” P
where
Py = { <start> }
Piyi = { pi ++ <nip> 1 3 pi € Py . (frontier(py), niv1) € R }

where ++ is append
frontier function gives last node in a sequence

PO = { <start> }

P1 = { <start,11>, <start,14> }

P2 = { <start,11,12>, <start,11,13>, <start,14,15>, <start,14,16> }
P3 = { <start,l4,15,17>, <start,14,15,18> }

(¢)

G = < start_node, Op > where
start_node is the root node
op is set of state transformers

In this case G = < <start>, {left,right} >

where
left(start) =11 right(start) = 14
left(11)=12 right(11) =13
left(14) =15 right(14) =16
left(15)=17 right(15) =18

and undefined everywhere else

This gives an inductive definition of the nodes and incidence relation of the graph

E3.16 Artificial Intelligence Dr. J.V.Pitt page 7 of 14

Ng =i-0\J"N;
where
Ny = { <start> }
Nivi = { niwi 1Jope Op . I ne Ni. nyyy = op(ny) }

Rg =i-\U7R;
where
Ri={(ngp,ny) | Jope Op.n;=o0p(no) }
Riy = { (ni, nixy) 1 Fope Op. I n; € Ni. niyy = op(my) }

(d)
P =0 U7 P}
where
P’y = { <start> }
P’ = { pi ++ <ni; > 13 op € Op. 3 pi € P’ . nyyy = op(frontier(pi)) }
Py = { <start> }

= {
P’ = { <start,l1>, <start,14>}
s = { <start,11,12>, <start,}1,13>, <start,14,15>, <start,14,16>, }
P’ = { <start,14,15,17>, <start,14,15,18>, }

i.e. the inductive definition gives us the same set of paths as before

Now using breadth first, the GGS creates all the paths in each P’ before searching any
of the paths in .

Using depth first search, it picks one path in the deepest P, and computes all those
members of P’ which are one step extensions of that path, and carries_on from there.

In this way, we can search a graph by computing it rather than exploring it if we were
given the full explicit definition.

E3.16 Artificial Intelligence Dr. .V Pitt page 8 of 14

ANSWER 4

MARKING SCHEMIE

(ay 3 marks:

(h) 4 marks:

(¢} 4 marks:

(Y 9 marks:

(a)

Conceptualisation = representation of knowledge in declarative form

formally 3-tuple <domain, functional basis, relational basis>

colour as element of domain colour(block, red)

colour as function colour(block) = red
colour as relation red(block)
(b)

unification = process by is computed a set of substitutions (values for variables) that
makes two terms the same

algorithm to unify two terms, X, and Y:
if X is a variable and Y is a variable, then they unify, substitute for each other
if X is a term, and Y is a variable, then they unify, substitution is Y <- X
if X is a variable, and Y is a term, then they unify, substitution is X <- Y
if X and Y are simple terms (constants), then they unify if they are identical
if X and Y are compound terms, then they unify if:

their functors are the same

they have the same number of arguments

each pairwise corresponding argument unfies

()

resolution: rule of inference: from p v g and —p v r, inferg v r
resolving p and —p is a contradiction

more general case:

To show it is sound, draw up a truth table, and show that when the premises are true,
so is the conclusion

(d) showing just the relevant facts:

(1)

connects(m4, london, bristol)
connects(ma0, london, birmingham)
connects(m62, bristol, manchester)
connects(m6, birmingham, manchester)

and vice versa, of course.

(i1)

Ya, Vb, Ym. connects(m, a, b) — accessible(a, b)

Ya, Vb, V¢, Vm. connects(m, a, b) A accessible(b, ¢) — accessible(a, c)

E3.16 Artificial Intelligence Dr. 1.V Pitt page 9 of 14

(i11)

facts as before

connects(m, a, by — accessible(a, b)
= —connects(m, a, b) v accessible(a, b)
call this clause 1

connects(m, a, b) A accessible(b, c) — accessible(a, c)

= ~(connects(m, a, b) A accessible(b, c)) v accessible(a, c)
= —connects(m, a, b) v —accessible(b, c¢) Vv accessible(a, c)
call this clause 2

(iv)
goal is: accessible(london, manchester)
query is — accessible(london, manchester) so by resolution and unification:

—accessible(london, manchester)

unify with head of clause 2
—connects(mé, london, b) v —accessible(b, manchester)

subst a=london and c=manchester

unify with fact

subst b=bristol
—accessible(bristol, manchester)

unify with head of clause 1

subst a=bristol and b=manchester
—connects(m, bristol, manchester)

unify with fact

subst m=m62
empty goal = success

E3.16 Artificial Intelligence

ANSWER 5

MARKING SCHEME
{a) 2 marks:

{(h) 10 marks

(¢) & marks

(a)

Dr. J.V.Pitt page 10 of 14

if b is true, b — ¢ depends only on value of c, so value of whole thing is (a — ¢)

(b)
—((a— (b—>) ((anrb)—0)
branch 1
~a— (b—7¢))
(anb)—c
a
—(b — ¢)
b
—c
—(a A b)
—b
X
branch 2
a—(b—c)
—((a A by > ¢)
anb
-

Skp
Skp where §* =/\S
FS—p

(©)
win <> —lose A ~draw or
win <> —(lose v draw)

win <> ~(lose v draw)
—lose

—(win v draw)

“win

“draw

——(lose v draw)

lose v draw

lose

X

O 0 ~1J N b Wi -—

1 negated conclusion
2 PB,1

4 el,2

5 a,2

6 a2

7 a,b

8 a,b

9 b,4,8

10 b,7,9

11 close,7,10
3 PB,1

12 1,3

13 a,12

14 a,12

15 a,l3

16 a,13

17 b,3,15

18 b,16,17

19 close, 14,18

premise

premise

negated conclusion
a,3

a,3

b,1,4

—6

b,5,7

close,2,8

10

E3.16 Artificial Intelligence Dr. 1.V.Pitt page 11 of 14

ANSWER 6
MARKING SCHEME
(a)4
{(h 4
O
Yy 8
(a)
[
7
Belief (fact) Plan
Database Library
Y ‘ 7
Sensors

S 3 Y \

S

B

S Interpreter Environment

N (Reasoning System) ;

g

A A 3

Effectors
. y A
Desires Intention
(Goals) ‘ Structure
[
|

Main Components

e belief database: facts about the ‘world’

e desires: goals to be realized

e plan library: sequences of actions to achieve goals

e intentions: those plans chosen for execution

e interpreter: executes intentions, updates beliefs, modifies goals chooses plans

Interpreter Execution Cycle

e At time t: certain beliefs are held, goals are established, plan (partially) executed

e FEvents occur: either sensed in environment, or via communication, which alter
beliefs or modify goals

¢ Combination of goals and beliefs will trigger action plan(s)

¢ One or more will be chosen and put on intention structure

e Interpreter selects an executable plan and executes one step

e Cycle repeats

(b)
Let knowledge K be a shorthand for: Kp <> Bpp v B, p

FE Bp A DB,p — I <inform(r,p)>
s believes p and wants (desires) r to believe p, then s intends to inform r of p

11

E3.16 Artificial Intelligence Dr. J.V.Pitt page 12 of 14

FDKp ABK,p— I<query(r,p)>
s wants to know p and believes that r knows p, then s intends to query r about p

E D _DONE(A) A B,Capability(r,A) = I<command(r,4)>
s wants action A done and believes r is capable of A, then s intends to command r to
do A

[s,inform(r.p)] B,p
after s informs r that p, r believes p

[s.query(r.p)] (B,p = DB,p) ® (B, p — D,B;p)
after s queries r about p, then either r believes p and intends to inform s that it is true,
or r does not believe p and intends to inform s that it is false, or,

[s,command(r,A)] 1 <A> A (B,DONE(A) — D,B.DONE(A))
after s commands r to do A, then r should intend to do A, and after DONE(A) become
true, r should intend to informs that DONE(A) is true

()

belief-desire intention states:

sending agent s:

beliefs BK,p
desires DKp trigger 2 gives [<<s, query(r, p)>>
intentions {}

receiving agent r (say):

beliefs Bp
desires {} tropism 2 gives DB
intentions {}

receiving agent r now:

beliefs B, p

desires D.Bp trigger 1 gives I <<r, inform(s, p)>>
intentions {}

sending agent s:

beliefs BKp

desires DKp tropism 1 gives B,~p which discharges desire
intentions {}

12

E3.16 Artificial Intelligence Dr. J.V.Pitt

(d)
Can use either FSD or AUML

need to specify:

client does cfp to N workers (for bids for task T within timeout)
client gets M (< N) replies, of which

1 are rejects,

j are propose, received within timeout

k are propose, received after timeout

client issues k rejects, one to each late bidder

client selects winning bid from j valid bids
client sends

accept to winner

j-1 rejects. one to each loser
winner worker does task
winner informs client T is done
client pays winner for T

rules are:
ought to be the case that, if client does cfp, client can pay for it

ought to be the case that, if worker does propose, worker can do task

page 13 of 14

if there is a contract, then ought to be the case that worker is obliged to do task
if there is a contract and task is done, ought to be the case that client is obliged to pay

when the client sends accept to winner, there is a contract

Dy(E.cfp(w,T,cnp) -> Can.Ecpay(w,T)
DEwpropose(c,T,cnp) -> CanyEyT
E.contract(c,w,T) -> DOywET
Econtract(c,w,T) -> DyOE.pay(w,T)
E.accept(w,T) =>¢ Eccontract(c,w,T)

where s is the institution regulating protocols
Ds is instituional constraint

Can is physical possibility

O is obliged

E is sees to it that

=>g is counts as in s (conditional connective)

13

E3.16 Artificial Intelligence Dr. 1.V.Pitt page 14 of 14

THIS PAGE IS OTHERWISE BLANK AND SIGNIFIES END OF THE EXAM
SCRIPT AND MODEL ANSWERS FOR
E3.16 ARTIFICIAL INTELLIGENCE.

14 [END]

