Optoelectronics 2003 - Solutions

la) The eigenvalue equation for TE modes in an asymmetric guide is:

b)

tan(kd) = k{y + 8} / {x* - y8}

Here x = V{n,’k,2 - B*}, y="V{ B?- n,’k,*} and 8 =V{ B2 - n,’k,2}, B is the

propagation constant and k, = 21/A, where A is the wavelength.
When n, = n;, Y = J, so the eigenvalue equation reduces to:
tan(kd) = 2ky / {x* - y*}
Dividing top and bottom by 1) ¥* and 2) y°, we may obtain alternatively:
1) tan(kd) = 2(y/x) / {1 - (y/x)*} and 2) tan(xd) = -2(x/y) / {1 - (k/Y)*}

From the double angle formulae for the tan function, we know that:

tan(2A) = 2 tan(A) / {1 - tan*(A)}
Comparing with Equations 1) and 2) above we can identify xh with 2A to obtain:

3) tan(xd/2) = (y/x) and 4) tan(kd/2) = -(x/y)
[4]
At cutoff, the ray angle inside the guide lies exactly at the critical angle, so that
total internal reflection no longer occurs. The decay constant Y becomes zero, so
that the evanescent field no longer falls away rapidly near the guide.

[2]
If y = 0 at cutoff, then B = n,k, and k = k,V{n,* - n,*}

(3]
From equations 3) and 4) we then obtain:
5)tan(kd/2) =0 and 6) tan(kd/2) = -oo

The separate cutoff conditions are therefore:

NHxd2=0,m,2nr,.... and 8)kd/2=7/2, 3n/2,51/2 ...

Equations 7) and 8) may be grouped together to obtain a general condition in the form:

9 xd/2=vn/2, wherev=0,1,2, ...
Using the value for ¥ found above, we then obtain:

10) kod2 V{n2 - n,2} =vm/2 or 11) QdAN{n-n2} =v



as the general cutoff condition.

[5]
) For the second order mode cutoff, we require v = 1 (the lowest order mode is v =
0). Equation 11 may then be used to complete Table I as shown below:
Sample n, n, d (um) Acuiotr (UM)*
#1 1.500 1.499 5.8 0.6330
#2 1.510 1.500 1.8(24) 0.6330
#3 1.505 1.500 3.8 0.93(15)
*Cutoff wavelength for the second lowest-order mode.
[6]




2a) The real and model index variations are as shown below.
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b) Assuming that r = x and r, = X, , we first put n(x) = n, \/{ 1 - (x/x0)°}.

Now, the direction of the ray at any point (x, z) may be then defined by a vector k,
such that | k| is equal to the local value of the propagation constant, kyn(x), where
ko = 2m/A. Similarly, the local slope of the trajectory may be found as dx/dz = k/k,,
where k, and k, are the x- and z-components of k.
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However, if the entire trajectory corresponds to a guided mode, we may also set k,
= B, where P is the modal propagation constant. We then obtain k, = V(k,’n’ - B?).

Substituting, we then get k, = V{(k,2n,? - B) - kong (x/%,)°}
This may be re-arranged as  B*(dx/dz)* = (k,’n,” - B?) - ko*ng (x/x,)’

We now guess the solution x = A sin(Bz + C). Differentiating and substituting
gives:

(ko’ny” - B - (k,’ng*A%x,Y)sin*(Bz + C) - B2A*B*cos’(Bz + C) =0

The only way to satisfy the equation above for all z is by removing the sin” and cos’
terms. This can be done if their coefficients are equal, since sin’0 + cos’0 = 1.

This requires k,"n,"A%/x,” = B°A’B* or B = kyny/Bx,
And (k,2n,’ - P2 - (ko’n,2AYx,2) =0 sothat A =x, V(1 - Bk, ny?)
Because values can be found for A and B, the assumed solution is a valid one.
(10]
¢)  For small index differences forming the guide, P = kyn, and B = 1/xy, so x = A
sin(z/x, + C). All rays then have approximately the same periodicity, and differ
only in their amplitude A and phase offset C.

A quarter pitch gradient index rod lens has its length L chosen so that L/x, = 7/2.
Each ray trajectory through the lens then has the form of a quarter period of a



sinusoid. An axially symmetric input (obtained from an optical fibre, for example)
will then give rise to a set of rays that travel in the z-direction as similar sinusoids
and then emerge parallel, i.e. as a collimated beam. Alternatively, a parallel beam
may be brought to a point focus.
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3a)

b)

¢)

Assuming that A, =1, P, =1. The power will be divided equally between the two
outputs, so that P, = 1/2 and P, = 1/2.

(2]
The amplitudes are therefore A, = 1N2 and A, = IN2.
[2]
1 g —e 1N2
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Reversing the above result, we can see that a symmetric input of A; = 12 and A,
= 12 will give an output of A, = 1. A symmetric input of of A =a and A, = a will
therefore give an output of A, = av2.
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Aninput of A, = a, and A, = a, may be decomposed into symmetric transmitted and
antisymmetric radiated components as shown below. The symmetric component
has amplitude a = (a, + a,)/2. The output amplitude is then A, = av2 = (a, + a)N2.

[2]
0 I
«— 2] =(aj +a2)/2 + (a1 - ap)/2
(ar+ap)N2 —— ——<7 T ) +a0)2 - (2] - 22
A; 2
The output power is P, = (a, + a,)*/2.
[2]

The input power is P = a,” + a,”. Since power must be conserved, the radiated power
must be P, =P - P, = (a, - a,)*/2.
[2]

The two-stage tree may be analysed by considering each Y-junction separately.
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Considering the upper right-hand Y-junction first, we can see from the results
above that the guided output amplitude must be (a, + a,)/N2. The radiated power
must be Py, = (a, - a,)*/2.
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Considering now the lower right-hand Y-junction, the guided output amplitude
must be (a; + a4)/\/2. The radiated power must be Prg = (a; - a,)/2.
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Finally, for the left-hand Y-junction, the inputs must be (a, + a,)/N2 and (a, +
a4)/\/2. The guided output amplitude must therefore be A, = (a, + a, + a; + a,)/2.

(2]
The radiated power must be Py = (a, + a, - a, - a,)/4.
0 < (a;+ap)N2
—< e
(a] +ap + a3 + a4)/2 --— (a3 + ag)N2
RC
For a 1-stage tree, we have M =1, N=2 A = (1IN2) X a
For a 2-stage tree, we have M =2, N =4, A, = (1/2) 2a
For an M stage tree, we would therefore guess A = (1AN) Z a,.
[2]
The input power must be P = a,*> + a,” + a,> + a,”.
The guided output power is:
P, = (a, + a, + a, + a,)/4, or:
P,=(a’+a,” +a," +a + 2a,a, + 2a,a, + 2a,a, + 2a,a, + 2a,a, + 2a,a,)/4.
The radiated output powers are
Pgs = (a, - 2,)%/2, or:
Po, = (2a,> + 2a,> - 4a,a,)/4
Pgs = (a; - a,)*/2, or:
[2]
Py =(a, + a, - a, - a,)%4, or:
Poo =(a,” +a,” +a," +a,” + 2a,a, - 2a,a, - 2a,a, - 2a,a, - 2a,a, + 2a,a,)/4.
[2]
Summing these powers, we obtain P, + Py, + Pyy + Prc = P as required.
[2]



4a) The broadcast function is obtained in a star coupler as shown below. When light
from (say) the 0" input reaches the planar guide region, it is no longer confined in
the lateral direction and diverges as it travels towards the output guides. Because
the polar radiation pattern is slowly varying, this light illuminates the output guides
roughly equally, so that the input power is divided approximately equally amongst
the outputs. A similar situation arises for the other possible inputs. Consequently,
an input to any guide is broadcast equally to all output guides.

[3]
A directional coupler based star achieves the same result using a ladder network of
2 x 2 splitters. An N-stage ladder can be used to generate a 2" x 2" star, and the
figure below shows a three-stage ladder arranged as an 8 x 8 star.
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Somewhat surprisingly, the radiative star has far better performance than the
coupler-based star, because variations in the accuracy of the power division of
each coupler rapidly degrade the uniformity of the overall power distribution.
These variations can arise from manufacturing, or changes in wavelength or
polarisation. The radiative star is also simpler to lay out in mask-making.

(5]

b)  For the path P, between the m™ input and the n™ output as shown below, the
lengths measured in the x- and y-directions are:
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L,=R-R{1-(1-cos(nAB)}-R{1-(1-cos(mAB)} and L, =R sin(mAB) - R sin(nAB)
Assuming small angles, these expressions can be approximated as:

L, =R -Rn’A0%2 - R m’A6%2 and L, =R (nAB) - R (mAB)

So the distance P;is: P, ’=L’+L}

Or: P_7=R*{1-n’A6%2 - m*A6%2}* + R*{nA@ - mAB}*

Or: P,.2 =R*{1 - n*A0” - m*A0?} + R*{n*A0? - 2mnA0O* + m’A0°*}
Or: P_%=R*{1 - 2mnA0?}

So that: P, =R{l - mnA®?}

(7]

Assuming that the propagation constant is , the relationship between the input amplitude
on guide m and the output amplitude on guide n is:

A, = A, exp{-ifP,,} = A, exp {-jBR} exp{+jmnBRAO*}

If all inputs are excited simultaneously, we can obtain the output amplitude from guide n
by assuming an equal power division during radiation, and summing the components
reaching output n from each of the N inputs as:

A,=Cexp {0} mon = "~ A, exp{+jmnot}
where C = 1/ V{2N + 1}, ¢ = BR and o = BRA®?

Apart from the unimportant (constant) phase term exp {-jo}, this expression has the form
of a discrete Fourier transform.

(5]



5a) The double heterostructure are the following three-layers:
p-Ga 4,Al;As (3) - GaAs (4) - n-Gag;Al ;As (5).
[3]
The function of layer 6 is two-fold: it has low refractive index, and so provides
lateral confinement for the channel guide, and it has high-resistivity, and so reduces
spreading of the injection current before it has passed through the heterostructure.

[2]
The function of layer 7 is to provide an ohmic contact to the Al metal.

(1]
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(2]

b)  If the energy gap of Ga, Al As varies E, = 1.42 + 1.24 x, the energy gap in the
active layer (GaAs) is 1.42, while the energy gaps in the other layers of the hetero-
structure (Ga,,Al,;As) are 1.792 eV. The band diagram is then as follows:
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4]
Similarly, if the refractive index of Ga, ,Al,As varies as n = 3.57 - 0.6285 x, the index of

the active layer is 3.57, while the indices of other the layers in the heterostructure are
3.382. The refractive index variation is then as shown below:
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[2]
The emission wavelength can be found from the energy gap of the active region as:
A =hcleE, = (6.62 x 10 x 3 x 10%)/ (1.6 x 10" x 1.42) m =0.87 pm

[2]
Under forward bias, the P-side of the band diagram tilts down, while the N-side tilts
up, as shown below.
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[2]
Electrons then move to the left, while holes move to the right. When the electrons
reach the step in the conduction band at the P-n junction, they are prevented from
moving further to the left. Holes are prevented from moving to the right when they
reach the step in the valence band at the n-N junction. Consequently, there is a large
electron density in the conduction band in the active region, and a large hole
density in the valence band. These populations are inverted from the equilibrium
distribution. A photon of the correct energy can then easily trigger the radiative
transition required in stimulated emission. The photons are confined to the active
region by the refractive index steps at the two heterojunctions.

(2]
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a)

b)

c)

The lumped-element rate equations for a semiconductor laser are:

dn/dt = I/ev - n/t, - Go(n - ny)
d¢/dt = B/t + Go(n - ny) - ¢/,

The individual terms in these equations are:

carrier injection I/ev
recombination -n/t,
spontaneous emission Bn/t,,
absorption and stimulated emission Go(n - ny)
radiation from the cavity -0/T,

31
The parameter n, is the electron density at which the rates of absorption and
stimulated emission just balance, i.e. the electron density at which the material
becomes transparent.

(1]
Below threshold, stimulated emission may be neglected, so the steady state
equations reduce to:

I/ev -n/t,=0
Pn/t, - ¢/1,=0

(2]
Above threshold, spontaneous emission may be neglected, so the steady state
equations reduce to:

I/ev -n/t, - Gd(n - ny) =0
Go(n-ny)-¢/1,=0 or G(n-ny-1/t,=0

2]
From the upper equations, the electron density below threshold is n = It/ev

(2]
From the lower ones, the electron density above threshold is n = n, + 1/GT, = ny,

(2]
The threshold current I, is reached when the electron density rises to ny, so that
I, = ngev/t..

[1]

The threshold current is most effectively reduced by minimising n,,. Since n, is
largely fixed, the gain constant G should be maximised by ensuring that the optical
field has a large overlap with the active region. A large photon lifetime is also
useful; this can be achieved using a long cavity with highly reflective mirrors.

(1]
i) Below threshold, n varies linearly with I, with a slope dn/dI = t./ev. Above
threshold, n is held constant at the value ny,.

ii) The rate of change of photon density due to radiation out of the cavity is -0/T,.

The total output photon flux is therefore ® = vo/t,. Each photon carries energy
hc/A, so the output power is P = (hc/A) (vi/T,).
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Below threshold, ¢/t, = Bn/t, = B/, = B(t/T,) Vev)
The output power therefore varies as P = B (hc/ed) (/1) 1
P therefore varies linearly with I, with a slope dP/dI = B (hc/ed) (t./1,,)

Above threshold, ¢/1,= Go(n - ny) = Iev - n/t, = {1 - I, }/ev
The power output therefore varies as P = (hc/ed) {I-1;}
P therefore varies linearly with I, with a slope dP/dI = (hc/e))

The variations of n and P are then as shown below.
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