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1. Consider the space H = @33 of matrices with three rows and three columns.
We define an inner product on H by < A,B > = trace B*A4, where B* is
the complex conjugate of the transpose of B, and we define the corresponding
norm on H by ||A||3, = < A, A>.

(a) What is the dimension of H? (1]
(b) In the sequel we denote
0 00
S=11 8 0},
010

Compute ||S|[3;. Compute also the norm ||S| when S is regarded as

an operator from @ to @3, (Hint: be careful, the norm of S as an
operator is not the same as ||S||4.) [3]
(c) We say that a matrix A € H is S-invariant if AS = SA. In the sequel
we denote by F the set of all the S-invariant matrices in . Show that

F is actually a subspace of H. [2]
(d) Determine the dimension of F. [2]
(e) Show that if 4, B € F, then also AB € F and AB = BA. (3]
(f) Find an orthonormal basis in F. [3]
(g) Show that if A € F, then A has only one eigenvalue. [2]
(h) Find a non-zero vector « € €2 such that for every S-invariant matrix
A, z is an eigenvector of A. [3]
(i) Explicitly describe all the matrices A € F for which A* € F. [1]
-1 -
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2. For 1 < p < oo, we denote by /P the space of all sequences u indexed by
k €{0,1,2,3,...} for which %32 Jug[P < co. For such sequences u, we use the

notation ||ullp = ( f=0[uklp)%. We denote by [*° the space of all bounded
sequences, and let ||ul|co = sup |ug/.

A linear discrete-time system with input u and output y is defined by the
formula

Yr = up +2ug_q, F=0,1,2. 3 -

The signals u and y are defined for integer times ¥ > 0 and we consider u_; = 0
(this occurs for k£ = 0 in the above formula).

(a)

(b)

(c)

(d)

In the sequel, we denote by T' the input-output operator of the above
system. Is T' time-invariant? Determine its impulse response g and
compute its transfer function G. (2]
With the notation from part (a), is G stable? Is it strictly proper? Is
this a finite impulse response (FIR) system? What is the DC gain of
this system? : [2]
Show that for every p (1 < p < 00), if u € IP and y = Tu, then also
y € [P and

lyllp < 3lullp- (3]

Show that if v € I? and y = T, then
lyllz > [Jull2. [5]

Let § denote the Z-transform of y. Show that if u € {2 and y = Tu,
then §(—2) = 0. Show that the operator T € £({2,1?) is not onto. [4]
Show that there exist operators L € £(i2,12) such that LT = I (the
identity on {?). Show that L can be chosen such that |L]] < 1. Show
that L cannot be chosen such that it is time-invariant. Hint: Denote
V = {Tu|u € 1?} (this is the range space of T). Define L on V using
Z-transforms, while L on V- can be chosen in an arbitrary way.  [4]
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3. In this question, S; denotes the right shift operator by 7 on L2[O, 0).

(a)

(b)

(g)

Define the natural inner product and the corresponding norm on the
space L2[0,c0). For s € €4 and ¢ € L2[0,00) defined by o(t) = e~*,
compute [|¢[|2. 3]

Let u € LQ[O, oo) and let @ denote its Laplace transform. Show that

la(s)| < Al gy an seCy.

Hint: use the result about ||¢||2 from part (a) and the Cauchy-Schwarz
inequality. 3]
Let y € Ll[O,oo), let § denote its Laplace transform and, as usual,
denote ||y||1 = fooo |y(t)|dt. Show that

[5(s)| < llylli forall se .. [3]

In the sequel, consider f to be the characteristic function of the interval
[0,4] and g(t) = €%, ¢ > 0. (Thus, f(¢) =1 for ¢ € [0,4] and f(¢) = 0
for t > 4.) We also define m = fg. Compute the Laplace transforms
£, § and 7. [2]
Which of f ,g and 7 is rational? Which of these functions belongs to
H>(C4)? Determine the poles of f,§ and 7h. Hint: for the question
concerning H*(C.), you may use the result from part (c). 3]
Define h = Sym, i.e., h is obtained by delaying m by 4 time units.
Compute its Laplace transform h, its norm ||A|s and the inner product

<m, h>. 3]
Compute
I@ll2,  llhllz and <, h>
where the norms and the scalar products correspond to the Hardy
space H2(Cy). (3]
— 3 —
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. Let L € €**2, H € €**! and consider the system described by

p(t) = Laq(t),
4(t) = — Lp(t) + Hu(t),
y(t) = H*q(t),

where u is the scalar input signal, p(t),q(t) € C? and y is the scalar output
signal. (As usual, L* denotes the complex conjugate of the transpose of L and
a dot denotes differentiation with respect to the time.) We define the “energy
in the system” by

B) = 3 ()12 + la@)2) -
(a) Write the equations of the system in the form
2(t) = Ac(t) + Bult),  y(t) = Ca(s),

where z is the state of the system and A* = —A4, C = B*. (2]
The notation A4, B,C and z(t) will be used also in the sequel.
(b)  Prove that all the eigenvalues of A are on the imaginary axis. Is this

system stable? Hint: ¢A is self-adjoint. [3]
(c) Show that E(t) = Reu(t)y(?). 3]
(d) Express the transfer function G of this system, in terms of the matrices
L, H, and also in terms of A, B,C. 3]
(e) Recall that if u = 0, then z(t) = e!42(0). Show that €4 is a unitary
operator on C* (for every ¢ > 0). Hint: use part (c). [3]

(f) For G as in part (d), find a function k : €4 — R such that

G(s)+ G(s)* = k(s)C(sI — A)~(sI — A*)"!B,

for all s € C4. Hint: for every s, 8 that are not eigenvalues of A4,
(sI- A1 = (BI—A) L = (B—s)(sI - A)~1(BI - A)~1. [3]
(g) Assume that H # 0. Using the result from part (f), show that the
transfer function G is “strictly positive”, which means that

ReG(s) >0 forall seC@,. [3]
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5. Consider the system with input u and output y described by the differential
equation

§+0.29 + 100y = 20— v.

We denote its transfer function by G.

(a)
(b)

Compute G and determine if it is stable. | 2]
Sketch the Bode amplitude plot of G and estimate |G|, with a
precision of £20%. 3]
Define the space BL(wp) of band-limited functions with angular fre-
quencies not higher than wy. [3]
Find an orthonormal basis in BL(wp). [3]

Suppose that u € BL(3) and v(t) = u(t) cos 50t for all t € R. Deter-
mine if v is band-limited and, if yes, what is its band-limit (i.e., the
smallest wy, > 0 such that v € BL(wy)). [3]

Show that u and v from part (e) are orthogonal to each other. [3]

Suppose that u from part (e) is the input signal of the system con-
sidered earlier, and y is the corresponding output function (defined for
all t € R). Show that y € BL(3) and ||y|| < ||u|| (these norms are
computed in L2(R)). Hint: you will need the Bode plot from part (b)
to answer this part. _ [3]

[ END |
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SOLUTIONS

(Question i Note that & A= [Aa‘j__{a
6,5=1,2,3, then lIAllﬂ= s |Azj\2.

“"3‘6{"1233}
(a) dim }f = 9. A o o
(b) ISl =V2. 5*51‘-[0 y 6|
0O o O

o(s*s)= {043, hence 1SH=1.

@) I§ AS=5A and BS=5B, then clearly (A+B)S
= 5(A+B) ond (AA)S =S (AA) fer every Ae C.
MS, F 1% & Su\:space o} *H,

@) (A, Ag O | (0 0 0
AS =1 A,, Az O ’ SA= |An Az A |
_-A32- A33 O- _AZA Azz A2.3

l; the above are earu.wQ Ci.e.) AG?) then A

rnu.st Llcwe H«e Sl-f'ucture.

o 0 O]

A=|p « 0|, vt «freC.
¥

ol

=

From L\ere_ L{: is c.l.ear {fkdl; AA.W\. ? = 3

~



(e) I

AB

A

—
—

ey

0
f

& © o

S 00
and B=]g 5 o ,‘l’.lnen
785
BA =
]

ot d 0 0
/33 + o€ A o | .

S+P,a+oc—7 pS+ ae &S

(5) An OT‘H"!OhQPMQQ bQSiS in 31 ES

k5 &

Y5 O
0 Vv
9] 0

=

o |

0

Y |

Fo o o
=¥z 0 0|,
O ¥z 0
01 Recall that 5" any
frianauLur matrix, the
o eige.nvaLue.s are the
o hu.mLerS on the ch'agonae
sl

/! to (d),

(3) |S A is as described in the onswer
U\en. Lf: ‘n.q.s onqj ohe e,ige,nvafae, ol .

©
We remark thet &§ !’3'%-"0 then A=

Lms no oH'Ler. EnAepen&en‘t exsenvec‘tors,

is an et‘genvector 30:‘ e.verj Ae?

<= &

> 8! ©

|

. OO

(L) 15 A is as o\e'sc.riLeJ in ‘H'\e onswer to (cf.),

then
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S I

}. For A*Esr we Must



Ques{?‘uon 2 (@) T iz Fime =invarianl, Its

Empulse. respense (s 9= (i,Z,O,O,O, ) and

ibs transfer Eunc'-‘fon is GR)=1+22 = 2+2

(19) The on@j pole efs G is at 2= O, and it is preper,
hence. E'l'. (s S‘BL\&. lt s ho‘l: s‘trict% preper , Since
G(0)=1. The syslem is FIR and ils DC gain is G@)=3.

(C) ‘De-néte_ ‘Hte. ngM’- Sl'\.i‘s-‘t or)era.":or CAe_fgj L_'j one S.E’-p)
L_'j ., —”'Len. g:u +25u, hence (l’j the frtangﬂe
inequuality in £7) Iyl < lul+2)5ul, = 3]ull,.

(ci) We l'\a.ve. Q(Z)z'-(i-l- 2:‘:")&(:.) and O"_“J the Paﬂej

WCe.ner ‘l:h@rem) ” 3“z= "’3"2 (ﬂ\e last norm is in
H*(E)). The

| 2 A2 | ax 2
I3, = 1515 = o= § heaa']- el
wkere ‘64 s H\e unit circEe in (E Eﬂ
No{t‘(.c ‘ur\at |+ 2z is on a circle Ce,nte.recl at 1
ond  anth radius 2, Se that H +.2:z", =] Sr zeﬁ',
H

= ul .

ence 2 ] A2 T
Iy, > Ré logla2) = B 1]

A
(6) ]5 ngu 'H'len 3’-‘-63- Since G(‘Z)""O, we oL'tain

'9(-2)-"‘-0, -HW‘A) we Camno't o};la.ln. as Tu Jdnose. Sl'.snal.s
wel? Sor which w(-2)#0.

..._.3....



(5) On V={Tu |ue®} we defne L by
U.=L3 =5 {A\."-:G-ié\ NP g=Tu.)
So that L. T =1, ACCc:ran to the resuft

g pat @)y Lyl = lul, < --_llgll o
that L s bounded Sr‘om Vot (% and.

ILl< 4 (oo an opereter n Z(V,12)

Now note thal V s closed. |hAeeAJ
5 (Ya) is o sequence in V pad Yo zz
then define u, = Lg It s lear that (u,,,)

(s o C.awc\«:j %?/J&nce n d l'\enc_g u -—:pq

gor some U, 61 Smce g -Tun ond | is
Con‘l:imtous, i EOUDWS H""-t gn""—ﬁt se ﬂf\a't

Yo= Tu, €V, Thus, V contoins its Liwit Poenf:s.
We c‘!.ec:omr)ose 12 == v y i V-L anﬂl we
o\egme L eom .L in an arb: erJ Lnear
WaJ) gﬁ’\ exa.mp(-é Lw 0 5or N we\/
Now l_ s degﬂ\eo\ en OJJQ L anc:l we ;—J«M

hove that IILN< L. (In foct, we hove ILI=L,
Igu_‘t this is hot imr)artant>

15 L, were JCLme LnVamant (§or some choice
o its reshriction to V* ) H‘len acr_orcimg to the
Foureﬁ - Segaﬂ, 'H’\e.ore.m) we WOU?A l’tc:we n = Lg_

LSS U.—Fa’ wlr\e,re. FE/—/OO(E> TcLL».n gév we See
that we must have F=G™ Lut ¢ s unstque.

._.j_'__.



\Question 3 (@) <S,g>= 8:5(*&)3_@3&1,

“5“2.=(S \S(t)l At) : l} c?(t):e_s’:, where
R€5>O then C?&L[OOO) and lC{J]\“'VZ_R;

(b) uelfow), U(s= S bt =<q,u>,
where @ is as in part @) By the Couchy-
Ochwarz inequality, [U(s)) < gl - flull, .
©) 1§ yel_q[o,oo), then

IQCS)] = }S:o = y(t)o\t, < S:ole'St]-[g(’c)lc\t.

lg Res>0, then *8-5t1<1 S-or' J >0, so

at e
- 46| < So ly®1dt = lyl, .

d) | A e
m "‘\'3 5(5)—'—;'(1—6 ),

s—5 ’

A A
() § i rtiond, miy= §iS)
5—6\th fm are nd rati onqﬂ o _S____ ().\. 820 95)‘

We have E m € L[OOO),
lflence (l"j par‘t (C)) 5 'meHm((]: ) 5 a_nJ 'm

lmve. no pDEeS 3 Ifw.s a {:oLe at 5 hence cf (s
nat th HM(G:) ‘_"5"""




A
(§> ho= S, m, hence h(s) = e m(s), so that

- ks 3g -‘15)

A N e . 'ﬂ
hr= —— 20 by
’* 3
Al = lml, .—_(S ot dt) r
O

=(|:) 1ot ) (L,o )z

<’M,g.> =0 because 'h"l('l:) -ﬁ,(f;) w= fp\. quos'l; every 1>0.

(%) ACCora\ina to 'Hﬂe Po.Lej"Wtener 'H'leorem

(Hn.e Conti =LA {
tNuous ‘tume Ver‘Stoﬂ), we l’lawe

e~

Il = fmll, = A (e 1),

('10 )
<7¢L>E—> = <'m) '£1>=O-

N

]

R, =4l



Quesjcion Li

(3) ‘The sjﬁte“‘ can be described L_')
X(0)= Ax®) +But), y@)=Cx@), where

P _|otL _[°
x(ﬂ-—L({_)], A ["f O], B [H]

ond C=[0 H*]. Note that A™=-A, C=B*

(b) A¥=-A implies that A is sef- adjounl, so that
LA has on% reall eige,n\rnﬁ.tms, Hence, ol the eigen—
\m.pwz/: 93 A ohe Own UR, So ‘H\a\i A is no't stable .

©) We have £($1p17) =% 2 <pip>
= 1(<pp>+<pp>) =L (<F0> +F )

— Re_<r;,,)> 3 s;‘miQarQ:j gor 9 in P‘acea?r:,
E

|

Re(<pop>+ <4,9>)

Re (<Lgp> = <L¥pgY +<Hu, g>)
= K (<qu.(>>'" <Lq,[:>) - RQ<U’H*ﬁ>
.

_J
vV
@)

i

= Re (uy)-

(@) G()=CHI-AY B. Applying the Laploce Hrans-

S'Orma‘l:iom 'to ‘Hie SjstEM e'.’arwal-ions) wm\ 2ers inL-—
tiad (‘.onzhtions) we Se't 5$=L%\, S‘a:""_*?"‘Ha
henee 528 =-L¥L § +sHR.

_...7__._.



(5"1"7 L*L)a = sHG R g-—- H*a, hence

G(s) = sH*(s‘T - I_%L)-1 H—,\

(€) We have E(t)=Flxt)I". 1§ u=0 then,

OtCCortling 'l'.o ‘Hne.
EW)=0, se that [x®l=1xOl Thu,

e,At s ESometri.c.) hence. Ker e.At = {O}, hence

resuft Sr‘om Part (c_'),

det eAt 0 , hence et s invertible , heace
eAt (s Umi,tafj. (We. remark that eAt is
actuo.,u,j invertiue gor e.vo_rj Scyua.re- matrax A)

(5) G() + 6" = C(sI-AY' R + B* (G- A*)'c*
= C(sI-AY'B + C(s1+A)'B
= c[&AY - (-51-AY] B
= (-3-5) C(:I1-A)'(E1-A)'B

= (2Res) C(sI-AY'(31- AY'B,
So that we have ‘ﬁ.(s)r- 2Re s.
(3) Dencte z(s)= (BI-A*)'B, so that

hxi

2sHe C . We \nqve., _S-or Res >0,
Re 66 = 4 [G()+ 6(*]
‘_ ac:oral.ir?)
- (Re S) Z(S)* 2('5) /(fo pnr't 5’)

= (Res) lz@I* >0.
step we have used that H#0 =B#0
—_— 8 —_—

this is the

Same as

G(s)

lh the st
=> zZ(s) #0.



s is the
goin

he
c

G

D

\Ques‘\‘.ion 5\ (‘a) G(S) e 2s -4
| s*+0.2s + 100
G is s'talkle, LEcmse the Aenouwimtor s a POBM'MJ

0§ degree two with positive coefficients.

(b)

204B

Commen‘ts '

“The zere at 0.5
causes the plot

to rise at a
sLope sj- ZOJ&/Aec.
The pair of poles
with absolute velue
W, = m =0
causes the Lnear

appmx.EMAL-'on 1o

‘ the plot 1o bend
To estimate the pea\'- value, o\o\:n Pw.-_tl\ ~-204R
we c.o-m‘\ute. /o\.ec. The pe.alt

o ZOL-_L _ . \JWQH.Q i a proxi—
G(AOL) e — 40 + O.SL ) Qﬂtfﬁj o.t [,er:‘lo.

so that [G(10i)| 240 (with an error Less than 19).
_ntu.s, llGl\m%’lO
) uel®(R) belongs to BL (w,) i
(}r,u.)(ilw) =0 Sof" jw| > w, -
Here, wb>0 and 3:/ denotes 'H-\e Fouriet' trqnsjor‘m..

d e (4y = A . Sin w(t-kz)
(4) e =4 e

048

=20dB -

\J--Hoasw

L

T
Where ILEZ and ’C-"-'--w—b'a This basis is ob-

toined as the inverse Touecer transform of the usual
Fou.rc'el" or{honarmaﬂ LQS(s (n Lz[“‘:f-db,":wbj-

__9___



(€) 1§ weBLE) and ¥(t)= u@®) ca 501 then,
Using that ¢ 50t = ‘_-;-_(65501: N e—iSOf: ,
we oLtain. (as in amrskﬂwle macl.uEaiiovLD
(Fo)(w) = -i-l:(.;ru )(tw - i50) -l-(}’u)(éw-i-iSO)]
So ‘“\a‘f.‘ <T«u—)(iw> = 0 50:" le> 53 (o.nc] also
T M"""“Q

T Wl ..

47 50 53

53 90w 0
Thus, e BL(53).

(_5’) The Fourier tro.nsjormaffon Srom B(R) to
Lz(‘vﬂ_\)> is (sometric (ﬂus (s the Parseval
eqH ﬁfj), hence < u,v> =<f}'u>3’ﬁ->.
Since (Fu)(iw)=0 fSor |w|<Ui?, in particulac
for |wl<3, we have < Fu,Fo >=0
(because (?u)C:‘w)G’?f)(iw) is 2ere Jor all we [R)

(g) IS ue BL (3) s the in rm't Signqﬁ and y is the
output St'gnqﬂ 5 then (?g ) (iw) - G (f.w) (.?'u.)(f.w).
Hence, (3-3)(@)-“-‘-0 for |w|>3, so that ye BL(3).

Ustng agein that & (s isometric, we have
oo

Iy = I3yl = =0 1@y () do

=-C0

3
= L 16 T do . From the Bude

3
r)‘.o‘l in r)art (b) we see that |G(iw)| s 4 Sor |w|< 3.

2 3 2 2
Hence "y”z = ﬁs_aj(?u)(gw)'zol%z Il?u“z = Hu’“z .



