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" 1. On the real vector space R3*3 (which contains all the real 3 x 3 matrices), we
define an inner product by

1
<a,b> = ) trace a’ b,

where a? is the transpose of a. We define the subspaces
S = {aeR¥*®| ol =0a}
(these are the so-called symmetric, or self-adjoint real matrices), and
A={acR¥®|dT =-a}
(these are the so—éalled anti-symmetric, or skew-adjoint real matrices).

() What are the dimensions of R**°, S and A? [2]

(b) Find an orthonormal basis in A. [4]

(c) Show that Ais orthogonal to S. From here, using your answer to part
(a), conclude that in fact, A is the orthogonal complement of .S. [4]

(d) Show that if @ € A, then the eigenvalues of a are imaginary. (Hint:
the complex matrix ia is self-adjoint.) (3]

(¢) Show that if a € A, then det a = 0. (Hint: use part (d) and a certain
symmetry of the eigenvalues.) (3]

(f) We denote the orthogonal projectors from R3*3 onto S and A by Pg
and P4 (thus, Pg + P4 = I, the identity operator acting on IR3X3).

Check that these projectors are given by
1 1
PS$=§($+$T), PA$=§($—~’ET)-

(Hint: use the conclusion from part (c).) (4]
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2.

We denote by cg is the space of sequences convergent to zero, and by c the
space of convergent sequences. We consider the indices (i.e., the discrete time)
to run from 0 to cc.

(a)

()

Give an example of a sequence a € I that has infinitely many nonzero
terms, and also infinitely many zero terms. [3]

Which of the inclusions cg C 12 or I% C ¢ is true? Give a very brief
explanation of your answer, and show that cg # 2. [3]

Give an example of a sequence b € [* such that b ¢ c, and compute
its norm in [*°. [2]

Compute the Z transforms of the sequences u and y given by

ue =k, y=(-1F.

For each of these Z transforms, indicate a domain (the largest domain
that you can determine) where the series defining the Z transform is
convergent. [4]

If possible, find a linear system which, starting from initial state zero,
if it receives the input u, it produces the output y. Here, u and y are
the signals from part (d). If you think that this is impossible, then
explain why you think so. [4]

Give an example of a sequence g = (g;) such that the series defining
its Z transform does not converge for any value of the variable z. Hint:
think of the £ transform as a Taylor series in the variable { = 2z~ L
How do you compute the radius of convergence of this series? Make
this radius zero. [4]
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3. In this question, S; denotes the right shift operator by = on LQ[O, co) and *
denotes the convolution product.
(a) Define the natural inner product and the corresponding norm on the
space L?[0,00). For s € C4 and ¢ € L2[0, o) defined by ¢(t) = e~
compute [/¢|j2. [3]
(b) Let g € L?[0,00) and let Lg denote its Laplace transform. Show that

|<£g><s)is¢‘;~‘$ forall se @,
es

Hint: use the result about ||¢||2 from part (a) and the Cauchy-Schwarz
inequality. [3]

(c) Inthe sequel, consider f to be the characteristic function of the interval
[0,2] and g(t) = €%, ¢ > 0. (Thus, f(t)=1fort € [0,2] and f(¢) =0
for t > 2.) Compute the Laplace transforms F = Lf and G = Lg. [3]

(d) Compute ||fll2, < f,g > and [|g||2 and check that the Cauchy-Schwarz
inequality holds for them. [4]

() Define h = Ssg, i.e., h is obtained by delaying g by 3 time units.
Compute

H=Lh, |hllz and P=L(h+g). [4]

(f) Compute
IGllz,  lIHllz and <F,G>,

where the norms and the scalar products correspond to the Hardy
space H?(C4) and F, G, H are as defined above. [3]
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4. Consider the system described by

=1 2]+ (e

v=00 73],

T2

where u is the input signal, = is the state (with two components), y is the
output signal and «, 8 are real constants.

(2)
(b)
(c)

For which values of «, § is the system stable? [2]

Compute the transfer function G of this system. [3]

For « = 8 = 1, compute the impulse response and the step response
of this system, as functions of ¢ > 0. [2]

Still considering @ = 8 = 1, compute ||G|l and ||G||2 (i.e., the norms
of G in H*®(C.) and in H?(C.)). [3]

Still considering a = 8 = 1, if u(t) = te~3¢ and z(0) = 0, compute the
output signal y as a function of ¢. [2]

For o = 1 and B = 0 (be careful, # has changed), consider the cascade
connection of the system with a delay line of 2 time units. Thus, if z is
the output signal of the delay line, then 2(¢) = y(¢ — 2). Compute the
transfer function H from u to z. [2]

Compute ||H||oo, where H is the transfer function from part (f). [3]
Suppose now that o and 8 are functions of #: a(t) = cost and B(t) =
sint. Is the the system with input u and output y still linear? Does this
system have a transfer function? Explain very briefly your answer.

[3]
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(a) Explain briefly what is meant by a time-invariant operator on 2. [3]

(b)
()

(d)

State the discrete-time version of the Fourés-Segal theorem and discuss
briefly its connections with systems theory. [7]

Define the space BL(wp) of band-limited functions with angular fre-
quencies not higher than wy. Give two examples of functions in this
space which are linearly independent. [4)

State the sampling theorem and discuss briefly its significance for the
transmission and storage of signals. [6]

[ END ]
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