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L(a). State Nyquist’s encirclement theorem, concerning the number of ‘unstable’ closed loop
poles of unity feedback control system. You should take account of the (possible) presence
of unstable open loop poles, and also specify the direction in which encirclements are
considered positive.

The unity feedback control system of Figure I has forward path transfer function

K(s+1)

G(s) = Goe

in which the gain K is an adjustable parameter.

Sketch the Nyquist diagram of G(s) for K = 1 (You should calculate, and show on the
diagram. intercepts with both real and imaginary axes.)

Determine from the diagram the ranges of the gain parameter K (> 0) for which the closed
loop system is stable and for which it is unstable.

1(b}. Choose K such that the closed loop control system of Figure I is critically stable. For
this value of K, consider a modified closed loop control system in which the forward path
transter function is replaced by

G(s) = (1+as)7'Gs).

(Here @ > 0 is a small positive constant). By considering how the original Nyquist
diagram is changed by the extra pole, assess the stability of the modified control system,
i.e. determinine whether the presence of a ‘small’, unmodelled, first order lag is stabilizing
or de-stabilizing.

(No calculations are involved in answering this part of the question.)

R(s) + C(s)

— - G(s) : -

Figure 1
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2. Figure 2 illustrates a control system for controlling a rotating shaft, in which G (s) is a
proportional + phase advance compensator

o (L+s/wg) ,
GC(S) = [Xm 0 <wy <wy.

(K >0, wg and w, are design constants.)

{a) Suppose that the compensated control system has gain cross-over frequency @ and
phase margin ¢,,. Show that

cos(0)K|G(jw)| = cos(6o) and Oy —61 = 6 (1)

where

0y = tan™! <i> g, = tan™! (i> and 0 = —180° + ¢, — LG(jO).

wo w1
4]
(b) Now assume that
4
G(s) = ———.
(s) s(s+1)(s+2)
Choose K, wg and w; to meet the following specifications:
(i) (Steady state response)
. N — -1
tl_l}nolo r(t) — c(t) 0.5 rs
when r(t) is a unit ramp (r(¢) =t¢, t > 0).
(ii) (Speed of response) Gain cross-over frequency @ = 1.7 rs™!
(iii) (Robustness) Phase margin ¢,, = 40°. 13]
Briefly comment on the magnitude of w;/wg-and any expected difficulties in the
implementation of this controller. 3]

Hint: In (b). you should use the fact, which you do not have to show, that eqns. (1) can
be solved for ©/wy and @/wy (for fized K and @) to give

/o = 1 — K|G(jw)| cos(8) and 5jwy = cos(8) — K|G(jw)|
7 T K|G(j@)|sin(6) e sin(6)
R(s) + ) C(s)
G (s) G(s)
- C
Figure 2
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3 Regard the electrical circuit of Figure 3 as a dynamical system, with zero control input and
with output vo(t), the voltage across the central resistor. All resistances have impedance
1 €. Furthermore, C =1 Fand L =1 H.

{a) Taking the state variables to be the capacitor voltage v and the inductor current 7.
show that the system and output equations are

dz(t)/dt = Az(t)
y(t) = cTz(t)

where .
a(t) = [ve(t) @], y(t) = vo(t)
and
_ | -2 =12 T _ _
A = +1/2 _3/2} and ¢ =[1/2 1/2] .
[14]
(b) Show that the system is not observable. 3]

(¢) Show. furthermore, that if the (possibly non-zero) initial values of the state variables
satisty
ve(0) =14g(0),

then
vg(t) = 0 forallt>0.

Hint: Derive a scalar differential equation for vy(t).

) (1) volts

velD) T;; C=1 % R=1

()

R=1
L=1

—— (0 volts)

Figure 3
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1{a). A system, relating control signals u(t) to the output signals y(t), has transfer function

1

Gl = SrFne

Provide a state space realisation of this system, in which the state variables are taken
to be y(t). dy(t)/dt and d*>y/dt>. Design a state feedback controller for this realisation.
which places the closed loop poles at the locations:

340§, —2+44. —2—3.

Find the controller transfer function D(s) in the control system of Figure {(a ) that gives
rise to the same closed loop pole locations.

1(b). A proportional + derivative + integral controller, with transfer function
Dy(s) = K(1+Tps+ I/T]S) ,
is proposed for a control system with plant transfer function

1

o=

to improve transient response and to eliminate state errors for constant reference signals.
(See Figure 4(b).) Choose controller parameters K, Tp and T to place the closed loop
poles at

-3+0j, =2+, -2—7.

Hint: Use the results of part (a).

- =0 7
t(s) +T_ D(s) u(s) . Ges) =)(s)
Figure 4(a)
LN 5 | i y(s)
1 (s+1) 2

Figure 4(b)
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Consider the double integrator system
d*y/dt* = u(t)

relating the displacement y(t) of a unit mass to the applied force u(t).

Determine the constants k7 and ko in the feedback control law
u(t) = —(k1y(t) + kady(t)/dt)

to minimize the cost .
/ [an(t) +2(0)] dt.
Jo
for fixed initial values 5(0), #(0) of the ‘state variables” y and y. Here, o > 0 is a fixed

. 1
design parameter. [18]

To solve this problem, you should reformulate the optimization problem as

Minimize [5° [XT(t)Qx(t) + u2(t)] dt

over control functions u(.) and state trajectories x(.)
(OCP) such that

dx(t)/dt = Ax(t) + bu(t)
x(0) = xq ,

for suitably chosen 2 x 2, 2 x 2, 2 x 1, 2 x 1 matrices @, A, b, xp respectively. (@ is
synunetric and positive semi-definite.) )

Then use the fact that the solution to (OCP) (in feedback form) is
u=-bl P x,
where P is a symmetric, positive definite solution of the Matrix Riccati equation:

ATP+PA+Q—Pbb'P = 0.

Describe the nature of the closed loop transient response of the controlled double integrator
system, for the controller you have designed, as a — oo. 2]

E3.09/C1.0/ISE3.9 Page 6 of 7



G. A certain nonlinear device, labelled NL, has a parabolic characteristic:

. e? ife>0
fle) = { —e? ife<0.

Derive the describing function N(A) for this device.
Hint: use the identity .['09 sin’(0')d0’ = — cos(9) + % cos®(0) + const.

The nonlinearity device is present in the forward path of the control system of Figure 0,
in which G(s) is the transfer function

(s +4)

Use the describing function method to predict the frequency of a limit cycle oscillation
and also its amplitude at the output.

Determine whether the limit cycle is stable or unstable.

r(t)=0 4 c(t)

—_—_ ) NL o G(S) -

Figure 6
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