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CONTROL ENGINEERING — SAMPLE EXAM PAPER

L. Consider the linear, discrete-time system described by
0 1
x(k+1) = Ax(k) = 1 0 x(k).
a) Let
x(0) = { . }
Compute x(k) for k= 1,2,3,4. Sketch the trajectory on the state space.[ 2 marks ]
b) Let
x(0) = [ ; } .
Compute x(k) for k= 1,2,3,4. Sketch the trajectory on the state space.| 2 marks ]
c) Let
o
x(0)= :
=[]
Exploiting the results in parts a) and b), compute the trajectory of the system
fork=1,2,3,4. [ 4 marks ]
d) Exploting the results in parts a), b) and ¢) and the definition of stability show
that the zero equilibrium of the system is stable, but not attractive. Is the stabil-
ity property uniform? [ 8 marks ]
e) The considered discrete-time system is the Euler approximate model, with sam-

pling time T = 1, of a continuous-time system described by the equation
X=Ax.

Determine the matrix 4. and discuss the stability properties of this continuous-

time system. [ 4 marks ]
2 Consider the nonlinear model of an AC/DC converter, given by
.1 n E .1 . 1 "
X = Lxgu I Xy = chz Cxl s

withx; (1) € R, x:(r) € R, u(t) € R, E, R, L and C positive constants.

a) Let u = ug > 0, with ug constant, and compute the equilibrium point of the
system. [ 4 marks ]
b) Write the linearized model of the system around the equilibrium point com-
puted in part a). [ 6 marks ]

) Study the stability properties of the linearized model determined in part b).
[ 4 marks |

d) Using the principle of stability in the first approximation discuss the stability
properties of the equilibrium of the nonlinear system. [ 2 marks ]
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e) To boost the energy of the system it is possible to select u(t) =0, for all 7.
Study the behaviour of the system in this situation. In particular show that
the system does not have any equilibrium and that lim; ..x; (1) = +o0 and that

lim, e x2(2) = 0. [ 4 marks ]
3. Consider the linear, discrete-time system described by
010 1
x(k+1) = Ax(k) +Bu(k)= | -1 0 0 |x(k)+ | —1 u(k).

0 20 2
a) Compute the reachability matrix of the system, discuss its reachability proper-
ties, and determine a basis for its reachable space. [ 4 marks ]
b) Compute the set of reachable states in one step and in two steps. [ 4 marks ]
c) Show that the system is controllable in two steps. [ 6 marks ]
d) Write the system in the canonical form for non-reachable systems. In particular,

show that the unreachable subsystem is described by the equation

X2(k+1)=0.
[ 6 marks ]
4. Consider the linear, continuous-time system
01 1 1
X=Ax+Bu = -1 0 2 |x+|0 |z
0 0 —1 0

with x(#) € R3 and u(f) € R. Consider a reference signal w(z) = [wy(2),wa(t), w3 (t)]
and consider the problem of designing a feedback control law such that the state of the
closed-loop system asymptotically tracks the signal w.

a) The class of reference signals w(z) for which asymptotic tracking is achievable
is characterized by the condition
W= Aw.
Show that w(r) = [sinz,cost,0]’ belongs to this class. [ 5 marks ]
b) Suppose w(#) is such that the asymptotic tracking problem is solvable. To de-

sign a control law which solves the asymptotic tracking problem one could
proceed as follows.

i) Define the tracking error e = x — w and write a differential equation for
e. In particular, show that e is such that

é=Ade+ Bu.

[ 5 marks ]

ii) Design a control law u = Ke, with K such that the matrix 4 + BK has
all eigenvalues with negative real part. In particular, select X such that
all eigenvalues of 4 + BK are equal to — 1. [ 6 marks ]

iii) Show that there are infinitely many matrices K assigning the eigenval-
ues of the closed-loop system as required and discuss why this is the
case. [ 4 marks ]
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5, A linear, discrete-time system is described by the equations

xi(k+1) = x1(k)+x2(k) + u(k)
xnk+1) = ox1 (k) +x2(k) + u(k)
yk) = xi(k) —xa(k)

where x(k) = [x1(k),x2(k)]' € R?, u(k) € R, y(k) € R and o is a constant parameter.

a)

b)

¢)

d)

Study the reachability, controllability and stabilizability properties of the Sys-
tem as a function of o. [ 4 marks ]

Study the observability and detectability properties of the system as a function
of . [ 4 marks ]

Assume o # 1. Design a dead-beat output feedback controller applying the
separation principle. In particular, select the state feedback gain K such that the
matrix (4 + BK) has two eigenvalues equal to 0 and the output injection gain L
such that the matrix (4 4 LC) has two eigenvalues equal to 0. Note that K and
L may depend on «. [ 8 marks ]

Compute
lim [ K| Lim |||
o—1 ol

and explain your results using the solutions of parts a) and b). [ 4 marks ]

6. Consider the linear electric network in Figure 6.1(a). Let R >0, C > 0 and L > 0.
Denote by u the driving voltage, by x; the voltage across the capacitor C, by x; the
current through the inductor Z, and by y the current through the voltage source.

b)

¢)

d)
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Using Kirchhoff’s laws, or otherwise, express the dynamics of the circuit in
state-space form, regarding « as the input and y as the output. [ 4 marks ]

Study the reachability and stabilizability properties of the dynamical system
determined in part a). [ 4 marks ]

Study the observability and detectability properties of the dynamical system
determined in part a). [ 4 marks ]

Show that if R°C = L then the unreachable subsystem is observable, and the
unobservable subsystem is reachable. Hence conclude that the system does not
have a reachable and observable subsystem. [ 4 marks ]

Show that if R?C = L then the input-output behaviours of the circuits in Fig-
ures 6.1(a) and 6.1(b) are the same. [ 4 marks ]
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Control engineering sample exam paper - Model answers

Question 1

a) By a direct computation we obtain

w(n:[_ﬂ, x(2)=[*g], o:(:n:[?], x(4)=M=m(0J.

This trajectory is sketched in Figure 1 (left). Note that A% = —T and A% = 1J.

b) By a direct computation we obtain

x(l):[é],m(?)=[_?], :c(3)=[_(1]}, x(4)=[?}=$(0).

This trajectory is sketched in Figure 1 (right).

T %y [ X,
l x(3) l x(0)=x(4)
| |
X2 | P x(3) ‘ x(l) .
...... —— — L o — e - B ".. - N @ i -I S i o e L,
‘ x(0)=x(4) \
| |

Figure 1. Sketch of the trajectories of the considered system.

¢) Using the results in a) and b) yiclds

$(1)={_£}, x(2)=[:EJ, 33(3):[-—2], x(é)=[3]=m(0).

This trajectory is sketched in Figure 2.

d) We have to show that for any ¢ > 0 there exists a d(e) such that [|z(0)|| < 6(¢) implies
lz(k)[| < € for all k. Note that for any initial condition the distance of z(k) from the
origin is constant, i.e. ||z(k)| is constant for all k. Therefore, the selection d(e) = ¢
makes the above implication true. The state does not converge to the origin, hence the
equilibrium is not attractive. Finally, the system is time-invariant, hence stability is
uniform.

¢) Given a continuous-time system & = Acz, its Euler approximate model, with sampling
time T, is

s(k+1) = (I + TA)z(k) = Az (k).
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Figure 2: Sketch of a generic trajectory of the considered system.

Hence,

A=I 1] -1
T T(-1 -1}

The characteristic polynomial of the matrix A is 242542, hence the continuous-time
system is asymptotically stable. (Note that, in this case, this is true regardless of the
value of T'.)



Question 2

a) The equilibrium points are the solutions of the equations

0= l:c +E 0= 1x+1:z:u
—LQ'UrOL —Rczclo-
From the first equation we have
Iy = E
Up
and from the second equation
= 1 S E
" Rug 1T Ru3’

b) The lincarized model is given by

i Oz i E
. o T 8 = ~g
dzy Oz “812 C ~ RC CRug

¢) The characteristic polynomial of the matrix A is

(s) =82 + = 3+—mﬁ

PEI=*"Rre* T IC

hence, by Routh test, its roots have negative real part. This implies that the linearized
system is asymptotically stable for any positive R, L, C' and wy.

d) By the principle of stability in the first approximation, the equilibrium of the nonlinear
system is locally asymptotically stable.

e) If u = 0 we have

E ) 1

I Ty = —p =22

The system does not have any equilibrium because the equation 0 = E does not have
any solution. Moreover, z;(t) = z1(0) + Et and z ()= e'ﬁ%.rg (0) which shows that

z1(t) — 0o and z5(t) — 0.
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Question 3

a)

The reachability matrix is

1 -1 -1
R=[B AB A’B|=| -1 -1 1
2 —2 —2

The matrix R has rank 2. In fact, its determinant is zero, and the first two columns
are linearly independent. This implies that the system is not reachable. A basis for the
reachable space is given by the image of R, namely

1. =il
ImR=Im| -1 -1
2 -2
The set of reachable states in one step is given by
[ 1
z(1) = Bu(0) = | -1 | u(0),
| 2
with u(0) € IR. The set of reachable states in two steps is given by
[ 1 <1
2(2) = ABu(0)+ Bu(l) = | -1 —1 | | “O) |

with 4(0) € R and u(1) € R.

The condition for controllability in two steps is Tm.A2 C Im[B, AB], which is equivalent
to
rank | B AB | A* | =rank[ B AB | =&

Note that
1 —1[-1 0 0
[B AB|42|=|-1 -1| 0 -1 0
2 —2[-2 0 0

and this has rank two. Hence the system is controllable in two steps.

To write the system is the canonical form for unreachable systems we define a matrix
L from the first two columns of R and adding a third colum which makes it invertible,
namely

l1 -1 1
L=|-1 -10
2 =20
The transformed system is described by
0 —-1|1/2 1

&(k+1) =L AL&(k)+ L7'Bu(k)= | 1 0]1/2 E(k)+ | 0 | u(k),
0 0] 0 0

from which we see that the unreachable system is described by the equation #5(k+1) =
0. This is consistent with the fact that the unreachable system has dimension one,
because rankR = 2, and the system is controllable, i.e. the unreachable modes are at
ZCTO.



Question 4

a)

Note that, if w(t) = [sint,cos¢,0]’ then w(t) = [cost, —sint, 0] and

cost 01 1 sint
—sint | =] =1 0 2 cost
0 0 0 -1 0

This implies that w(t) belongs to the class of signals for which asymptotic tracking is
achievable.

Let e = z — w and note that
€=2—w=Az+ Bu—1 = Az + Bu — Aw = Ae + Bu.

Let now
u=Ke=K(z—w)

and select K = [k, ko, k3] such that the cigenvalues of A + BK are all equal to —1.
Note that
ki 14k 1+ks
A+BK=| -1 0 2
0 0 -1

The characteristic polynomial of A + BK is
p(s) = (s +1)(s* — kis + 1+ k)

and this should be cqual to (s +1). This is achieved by selecting k; = —2 and ks = 0,
while k3 can be arbitrarily assigned. This is due to the fact that the pair (4, B) is not
reachable, however it is stabilizable and the unreachable mode is s = —1. This can be
seen considering the reachability pencil

$§ =1 =111
[si-4|B]=|1 s -2 |0
0 0 s+1|0

and noting that it has rank 2 for s = —1 and rank 3 for any other s.



Question 5

a) The reachability matrix is

1 2
R_[l rx+1J

and the system is reachable if & # 1. If o = 1 the reachability pencil is

or-alz )=

and this has rank 1 for s = 0 and rank 2 for any other s. Therefore, the system is
controllable and stabilizable.

b) The observability matrix is
1 -1
k= [ l—-a 0 J
and the system is observable if @ # 1. If ¢ = 1 the observability pencil is
{ 5T — A J s—1 -1
—=—|=|_=L s-1
1 —1

and this has rank 1 for s = 2 and rank 2 for any other s. Thercfore the system is not
detectable.

¢) Let K = [ky ks] and note that

I 0 o
ATHE = [a+k1 ky +1 }

and that the characteristic polynomial of this matrix is
4+ (=2 = k1 — kp)s+ (ks — a+ 1 — k).

Hence the sclection
ki =-1 ko = —1

is such that the eigenvalues of A + BK arc equal to 0. Let L = [I; lo]” and note that

| h+1 1-4
A+LC= |V a+ly 1-1s J ’
and that the characteristic polynomial of this matrix is
S+ (-2—h+b)s+ (-2 +h +1+ha—a)

Hence the selection

L_3ta . _1+3a
R — S g

is such that the eigenvalues of A + LC are equal to 0. Finally, the controller is £ =
(A+BK + LC)§ — Ly, u = KE€.

d) The limit for @ — 1 of [|K|| = ,/k2 + k% is /2, whereas the limit for @ — 1 of [|1Z]|
is equal to +oco. This is in agreement with the fact that, for o = 1, the system is not
reachable but stabilizable, with a non-reachable mode equal to 0, but not detectable.



Question 6

a) Let i1 and iy be the currents through L and C, respectively. Then Y =1i=1d;+ is.

Morcover,
b s e u— Lio
1= =—p
Hence,
1
-—— 0
e RC B=
0o _E
L
b) The reachability matrix is
&=

1
RC
1
L

1
RC
1
L

g e BESA
9 =Ci; = I
1 1
p— —_—— .D:“‘-
¢ [ R 1] R
1
- R2C?
R
12

and it is full rank if R?C # L. If R2C = L the system is not reachable. However, as
both the eigenvalues of A have negative real part, the system is stabilizable.

¢) The observability matrix is

0

1
LI
RC T

and it is full rank if R?C # L. If R%C = L the system is not observable. However, as
both the eigenvalues of A have negative real part, the system is detectable.

d) Consider new coordinates & such that z = Lz and L is constructed from the first column
of the reachability matrix, multiplied by R2C, and a second column which renders L

invertible:
R 0
L= { i L J |
Then
1
. e 0 )
"R
Y= [ 0 1 J 3
These equations show that the unreachable subsystem, namely
WY
AT TRO
is observable, and that the unobservable subsystem, namely
& = —L:f: +u
1= ~goh

is reachable. Hence, there is no subsystem which is both reachable and observable.



e) The input-output behaviour of the first electrical network is described by

1
e it e mct

At _ _
Ce™B+D = I el

This, for L = R?C, is equal to 1/R, which describes the input-output behaviour of the
sccond circuit.



