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Solutions:
1) a) Bias B = 6 — E{fy}.
If the bias is zero, then the expected value of the estimate is equal to the true

value, i.e. E{fy} = 6 and the estimator is said to be unbiased.

b) An estimator is asymptotically unbiased if an estimate is biased but the bias
goes to zero as the number of observations, N goes to infinity, that is

i {0y} =0
¢) An estimate O is said to converge to # in the mean square sense if
lim E{|6y —01?} =0

i) The sample mean estimate is unbiased, since E{r,} = + SN E{z[n]} = m,.
Since the variance of the sample mean estimate is

N
. 1 o2
var{m,} = e E var{z[n]} = N
n=1

which goes to zero as N — oo, it follows that the sample mean is a consistent
estimator.

d) i) mp = E{z} =p-1+(-1)-(1-p)=2p -1
ii) For an estimator m, = z[N], the mean is
B{in.} = E{a[N)} = 2p - 1

and the estimator is unbiased. However, m, = z[N] is not a good estimator of
the mean.

iii) The estimate of the mean, 7, will either be equal to one, with probabil-
ity p or it will be equal to minus one, with a probability of (1 — p). Therefore
the accuracy of the estimate E{rm,} = z[N] does not improve as the number of
observations N increases. The variance of the estimate

var{m,} = var{z[N]} = 4p(1 — p)

does not decrease with N. The estimator does not converge in the mean square
sense and is therefore not consistent.
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2) a) The constraints involved in the derivation of the BLUE are the unbiased
and linear constraint, that is

E{f} = i anE{z[n]} = 6

The vector of parameters a = [ay, ..., ay_1] is found by minimising the variance
of the BLUE with the unbiased constraint. Since that is not directly possible,
the second constraint is that E{z([n]} is linear in 6

E{z[n]} = s[n]o

where s[n|’s are known.
The variance of the BLUE is

var{f} = E (i apzin] — E {i a,g:[n]}) =a’Ca

where C is the correlation matrix.
b) The optimisation problem to find the BLUE is:

- minimise the variance of the BLUE var{#} = a”Ca
subject to
- the unbiased constraint SN E{z[n]} =0 & SN Ja,snf =0 < als=1.

¢) To derive the scalar BLUE, we need to minimise the variance var{é} =a’Ca
with respect to the constraint a’s = 1.
This is a constrained optimisation problem and the Lagrangian function becomes

J=alCa+ AaTs 1)

The gradient with respect to a is

aJ

— =2Ca+ As
da
Setting this equal to zero vector and solving produces
A T-l
a=-—-sC's
2

The Lagrangian multiplier X is found from the constraint a’s = 1, so that the
gradient is zero with the constraint satisfied for
_ C's
B = TGS



The variance of the BLUE is then var{f} = ro-Ts-
d) BLUE is applicable to amplitude estimation of known signals in noise.

e) BLUE is inappropriate for problems which are nonlinear in the data, such

as for instance estimation of the power of WGN. The MVU estimator in this case
is

| V=2
so 4 2
0 =5 z’[n)

which is clearly nonlinear in the data.



3) a) The ARMA(p,q) model is given by
2[n] = arz[n — 1] + aszn — 2] + -+ + ayz[n — p| + wln] + brwln — 1] + - - - + baw[n — g

i) From the equation of an ARMA(p,q) process above, the autocovariance func-
tion satisfies the difference equation

Coo(k) = arco(k — 1)+ + apcea(k — D) + Cow(k) + bicow(k—1) + -+ - + byCan(k — q)

Therefore, for kK > q + 1, the crosscovariances between z and w vanish and the
autovariance becomes

cao(k) = arc, (k= 1)+ -+ + apeq.(k — p), k>qg+1

ii) The ARMA(p,q) process consists of an AR(p) process driven by signal e[n]
where e[n] is an M A(q) process. In other words, the ARMA(p,q) process can
be considered as an AR(p) process driven by coloured noise e[n]. The moving
average terms will not affect the denominator of the transfer function and will
not influence stationarity of the superimposed autoregressive process.

iii) The power spectrum P,,(f) of an ARMA(p,q) process is given by

y 1+ bre 4ot bqe‘ﬂ”qﬂQ
=0

Y1 —agenf — o — ape—327rpf|2

Pzz(f)

b) From the stationarity and invertibility conditions of AR(1) and MA(1) pro-
cesses, process z[n] is stationary for —1 < a; < 1 and invertible for —1 < b; < 1.

i) and ii) From question a) part i) we know that the autocorrelation coefficients of
an ARMA(p,q) process are equal to the autocorrelation coefficients of an AR(p)

process for k > ¢+ 1. From the autocovariance function, dividing by ¢(0), for an
ARMA(1,1) process we have

po = 1

(14 a1b1)(ay + b1)
1+ b% + 2a1b1

P = a1Pk-1, k>2

P =



4) a) Solving the linear mean square estimation problem starts with differen-
tiating J with respect to a and b and setting the derivatives to zero, as

aJ

o= —2FE{(y — az — b)x} = —2E{zy} + 2aE{z*} + 2bm, =0
aJ
= —2F{y — ax — b} = —2m, + 2am, +2b=0

It then follows that

E{zy} — mym,
a =

o2
- E{z*}m, — E{zy}m,
- -2
Since
E{zy} = ao’ + mym,
we have
o
a= )Oa:y—y‘

b=my —am,

b) Using the values for a and b from part a), the minimum mean square error
can be evaluated as

E{(y -} = o}~ ao? = 31 - 2,

Notice that if  and y are uncorrelated, then a = 0 and b = E{y}.

¢) The advantages of using a linear mean square estimator are:

- The parameters a and b depend only on the second order moments of = and y
and not on the joint density functions.

- The equations for solving for a and b are linear, hence the computational com-
plexity is low.

- For Gaussian random variables, the optimum mean square estimate is linear.

d) The linear mean square estimate assumes fixed coefficients a and b and the
problem is solved in a block fashion, that is, taking into account simultaneously
all the available data.

Linear FIR filter, trained by the LMS algorithm, on the other hand deals only
with a portion of data which is present in its tap inputs, the estimation is recur-
sive, and the coefficients are adaptive.



5) a)

~—E{e2}_ E{d?} E{Zwkmkd}+ E{Zijwk:c]mk}

ij=1 k=1

Therefore

N N
§ § w; wk'rzz Ja

j=1 k=1

DO —

1 N
J = ET'd - kz_:lwk’l"dx +

Differentiating J with respect to wy and setting to zero we obtain
Zwojrﬂ?m(j’ k):Txd(k)7 k= 1,2,...,N

where w,; are the optimal weights.

b) To avoid the matrix inversion involved in the Wiener filter, we can make
the weights time varying and adapt them in an iterative fashion. In that case

Awg(n) = =0V, J(n), k=1,...,N
and
wi(n + 1) = wr(n) + Awi(n)

Therefore
wk(n+l)+wk< + 1| Tdx — ij Tma: .77

The method of steepest descent is exact in the sense that there are no approxi-
mations made in its derivation.

¢) If we use the instantaneous estimates instead of the exact estimates of the
autocorrelation and crosscorelation functions, we have

rxx(jv k; TL) =T (n)xk(n)
raz(k;n) = zp(n)d(n)

and the LMS algorithm becomes

wy(n) = wp(n — 1) + ne(k)zi(n), k=1,...,N



i) The learning rate defines the step towards the global minimum on the error
surface. The convergence in the mean is attained provided that

0<n<
A’I'?'L(.l$
where Apnqr 1S the largest eigenvalue of the autocorrelation matrix. Convergence
in the mean square is preserved if the learning rate is positive and its value is less
than the twice the inverse of the total input power.

ii) The LMS is computationally much simpler, can deal with both the stationary
and nonstationary data and is very robust. However, due to the instantaneous
estimates of the second order quantities from the Wiener filter, its steady state
error can be considerable and the convergence is relatively slow. The LMS is a
suboptimal iterative solution to the Wiener filtering problem.

iii) A multidimensional plot of the cost function J versus the weights consti-
tutes the error—performance surface, or simply the error surface of the filters. It
is bowl-shaped with a well defined bottom or global minimum point. The error
surface of NLMS has its contours which are ideally concentric circles, which is
not the case with the error surface of LMS, where the contours are elliptic.



