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1) Modern spectrum estimation methods assume that the measured dataset z[n]
is generated by some form of model driven by a random noise input. Assume
that dataset z[n] was generated by an autoregressive (AR) model of order p
(AR(p)) driven by white Gaussian noise w|n] with zero mean and variance o2

(w[n] ~ N(0,0%)).
a) Write down a general expression for an AR(p) model. [2]

b) Derive the expression for the autocorrelation function of this process and
write down the expression for the power spectrum of an AR(p) process.
Explain how the power spectrum can be obtained from the functional ex-
pression of this process and its autocorrelation function. [8]

c) Figure 1.1 shows the frequency response of an AR process. From the shape
of the amplitude spectrum, what is the order of the underlying AR process?
Why this cannot be the frequency response of an M A process? 4]
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Figure 1.1: Frequency response of an autoregressive process

d) Consider an AR(2) process given by
z[n] = 1.52[n — 1] + asz[n — 2] + w[n]

To preserve stability, should the value of coefficient a; be positive or neg-
ative? Are the roots of the characteristic polynomial in this case real or
complex? Explain. [6]
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2) When the probability density function of the data is unknown or cannot be
assessed, the minimum variance estimator, even if it exists, cannot be found.
One suboptimal approach is to assume the estimator to be linear in the data,
unbiased and with minimum variance, such as in the case of Best Linear Unbiased
Estimator (BLUE).

a) State the equation for a scalar form of BLUE for the given data
- x={z[0],z[1],...,z[N - 1]}
for which the probability density function (pdf) p(x,6) depends on the
unknown parameter 6. [2]
i) Write down the equations describing the constraints of BLUE (linear and

unbiased). Explain in your own words the need for these constraints. 6]

ii) The power output of a wind turbine Py is proportional to the cube of
the wind speed v, that is
‘ Pyt ~ kv®

where k is a constant. Is the BLUE estimator of the average power based
on v unbiased? Explain a possible transformation of the wind speed which
guarantees unbiased estimation. [4

b) Consider the case of BLUE for a vector parameter.

i) Write down the expression for the BLUE estimate of the unknown vec-
tor parameter © = [f;,...,6,]T and the variance of such an estimator
(Gauss—-Markov theorem). [4]

ii) Prove that BLUE is identical to the weighted least squares estimator.
Recall that the weighted least squares estimator is found by minimising
the criterion

=(x-HO)'C'(x-H

(Hint: To prove that © that minimises J is BLUE, apply the method
of least squares to J, based on 2% =0.) [4]
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3) A random variable y is estimated in terms of an observation of another random
variable z. The problem generally arises when y cannot be directly observed or
measured so a related random variable is measured and used to estimate y. The
goal is to find the best estimate of y in terms of z.

In the linear mean square estimation, the estimator is constrained to be of the
form

y=az+b

The estimation error is e = y — §j and the goal is to find the values for a and b
that minimize the mean square error

J=E{(y-9)*} = E{(y - az - b)*}

a) Solve this linear mean square estimation problem and find the values for a
and b. 8]

b) Using the result from a) derive the minimum mean square error Jmin.
B3]

¢) What are the advantages of using such an estimator? Does this method
require the knowledge of the probability density function? 3]

d) What is the principal difference between this estimator and the standard
adaptive finite impulse response (FIR) filter trained by the least mean
square (LMS) algorithm? Comment on the character of the cost function
to be miminised and the mode of processing (block, sequential). 6]
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4) a) An unbiased estimate of the autocorrelation function can be calculated from

N—|r|-1
1
Pz (1) = > alkzlk+7], r=-WN-1),...,-1,0, 1,...,(N—=1)
N — || =
What is the length of the so obtained autocorrelation function? Explain
what is happening for large |7|. [4]

b) The first ten samples of the normalised autocorrelation function p(k) =
T2z(k)/722(0) of a random process are shown in Figure 3.1. If the under-
lying process is AR(p), from Figure 3.1 state the order p of such a process
and the value of its parameter(s). Write down the exact expression for the

power spectrum of this process. Explain. [€]
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Figure 3.1: Normalised autocorrelation function of a random process

c) Let z[n] be a process that is generated according to the difference equation
z[n + 1] = a,z[n] + w(n]
where a; is a parameter, and w[n] ~ N(0,1). An adaptive finite impulse
response (FIR) filter is used for the prediction of this process. :

i) Derive the expression for the Least Mean Square (LMS) update of a
single coefficient adaptive FIR filter, based on the above equation and

the result from b). [6]
ii) State the bound on the step size which ensures the convergence of such
a filter. 2]

iii) What is the minimum mean square error achievable by using this FIR
predictor? 2]
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5) Consider the linear optimum filtering problem (Wiener filter). The input-output
relationship of this filter is described by

vinl = 3" wiafn - k]

where Wope = [w1, ws, ..., wp|” are filter coefficients and {z[0], z[1],.. ., z[N - 1]}
the input data. Let d[n] denote the desired response of this filter and e[n] =
d[n] — y[n] the instantaneous output error.
a) Derive the optimum set of coefficients for which the mean squared error is
minimum (Wiener filter). [4]

b) If the weights of this filter assume a time varying form, explain in your own
words the principle behind the method of steepest descent. 6]

c) Draw the block diagram of the system identification configuration of adap-
tive filtering. Explain the operation of this adaptive filtering scheme. What

are the applications of system identification? [4]
i) The cost function for a stochastic gradient type of adaptive filter is
given by
J[n] = [e[n]]
Derive the corresponding learning algorithm for an adaptive FIR filter
of length L.
(Hint: The weight update is calculated based on VwJ[n)jw=w(x): The
derivative of |e[n]| is sign(e[n]) = f_:-F]]T [4]

ii) The sign-sign algorithm is used to train the adaptive filter in the
system identification configuration. Write down the expression for
the update of such a filter. Explain the benefits and drawbacks as
compared to the standard LMS algorithm. 2]
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Solutions:

1) a) [bookwork]

An autoregressive (AR) process of order p, that is AR(p) is given by z[n| =
b aizln — 1) + wn]

where z[n] is the output of the model and w(n] are samples of zero mean white

Gaussian noise with variance o2 (w[n] ~ N(0,0?)).

b) [bookwork] Since the autocorrelation function is a function of correlation
lag k, we need to calculate E{z[n]z[n — k]}. TO achieve this, first evaluate the
product

z[n — k|z[n] = a1z[n — k|z[n — 1] + ag2[n — k]2[n — 2] 4 - - -
+ayz[n — klz[n — p] + z[n — kjw(n]

Notice that E{z[n — kJw[n]} vanishes when k£ > 0, since the driving WGN is not
correlated with z[n] for £ > 0. For the correlation function function we therefore
have

riz(k) = airp(k—1)+ar(k—2)+ - +apr(k—p) k>0 and
r2(0) = a1rs.(1) 4 agre.(2) + -+ apro.(p) + 02, fork=0

The general expression for the power spectrum of ARMA models is (follows by
applying the z transform to the time domain expression for ARMA models)

o Ba(2)By(27")

Ple) = Ap(2)Ap(z77)

From this expression and for B = 1 we obtain the expression for the power
spectrum of an AR(p) process

Pa(f) = 20 0<f<1/2

|1 — ale—.???"f—m~apc—ﬂfrpf ‘2

¢) [bookwork, coursework and intuituve reasoning] This is an AR(4)
model, since the spectrum has two peaks. These peaks are generated by 2 con-
jugate complex pairs of poles. This cannot be the frequency response of an MA
spectrum since there are no finite zeros in the spectrum.

d) [new example and intuitive reasoning]

From the stability conditions of AR processes a; +as < 1, hence —1 < ay < 1.
In this case, since a; > 0 this means that a; < 0 and from the second condition
also as > —1, therefore when a; > 0, we have —1 < as < 0.

Also, from the stability triangle this means that the roots of the characterisic
polynomial are complex.
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2) a)[bookwork]
The BLUE estimator is restricted to have the form

N-1
P Z anz(n)
n=1

i) [bookwork] To determine the BLUE we constrain  to be linear and un-
biased, and then find the a,s to minimise the variance. Linearity

f= Z anz[n]

n=1

Unbiased constraint

w
|
Il

E{é}:‘ia,LE{x[n]}zﬂ > afs=1

n=1
with
s = [s[0] s[t], .., s[V = 1]]7
In other words, in order to satisfy the unbiased constraint for the estimate f;,
E{z[n]} must be linear in 6, or
E{z[n]} = s[n]@

ii) [new example and bookwork] The MVU estimator Py is nonlinear in
the data v®. Forcing the estimator to be linear is guaranteed to yield biased
estimation. One way round it is to introduce a new variable z = v, so Py is
now linear in z.

b)
i) [bookwork]

Given
x=Hf+w

with w having zero mean and covariance C, otherwise arbitrary PDF.

BLUE:-
§=(HTC'H) H'C'x
and the minimum variance of 6; is

var(6;) = [(HTCT'H)™],,



with covariance matrix of 8

G&= ( HY 1 H)_l

ii) [new example] In least squares estimation, we need to find the gradient of
the cost function with respect to the unknown parameter vector, and set to zero
to find the LS estimates of the coefficients

a7
00
= © = (H'C'H) HTC'x

= —2HTC 'x+2HT'C'HO® =0

This proves that in this case the BLUE estimator is identical to the weighted LS
estimator.



3)a) [application of bookwork]
Solving the linear mean square estimation problem starts with differentiating J
with respect to a and b and setting the derivatives to zero, as

oJ
0= —2E{(y — az — b)x} = —2E{zy} + 2aE{z*} + 2bm, =0
6‘]
P —2FE{y — az — b} = —2m, +2am,; +2b=10
It then follows that
E{zy} — mem,
a= 5
O—I
- E{2*}m, — E{zy}m,
= -2
Since
E{zy} = ao> + m;m,
we have
o
a= p:cyg_j:

b=m, —am,

b) [new example]
Using the values for a and b from part a), the minimum mean square error can
be evaluated as

E{(y-9?} =0 - d’ol=0y(1 - o)
Notice that if z and y are uncorrelated, then a = 0 and b = E{y}.
c) [bookwork]

The advantages of using a linear mean square estimator are:

- The parameters a and b depend only on the second order moments of z and y
and not on the joint density functions.

- The equations for solving for a and b are linear, hence the computational com-
plexity is low.

- For Gaussian random variables, the optimum mean square estimate is linear.

d) [bookwork and intuitive reasoning]

The linear mean square estimate assumes fixed coefficients a and b and the prob-
lem is solved in a block fashion, that is, taking into account simultaneously all
the available data.

Linear FIR filter, trained by the LMS algorithm, on the other hand deals only

—_ \JF
o,



with a portion of data which is present in its tap inputs, the estimation is recur-
sive, and the coefficients are adaptive.

Least mean squares algorithms minimize a deterministic cost function (sum of
squared errors on a block of data), whereas stochastic gradinet algorithms min-
imise a stochastic cost function (estimation of the instantaneous error).



4) [coursework solutions, bookwork]

a) The length L of this ACF is 2N — 1. For large T there are only a few non-zero
elements in the sum and the ACF estimate is not reliable. This is why these
estimates are very noisy (see your coursework)

b) [new example, coursework]

This is the ACF of an AR(1) process z[n] = a;z[n — 1], where a; = 0.9. This
is obvious from the expression for ACF of AR(1) processes, p(k) = a¥, and the
values of p from Figure 3.1. The normalised ACF for k = 0, that is p(0) = 1

-
1
Q

o
]
Py

0.81
? 0.7290

§ o661
? 0.5905

o N @

i

normalised autocorrelation
© o0 o o o o o o
(&) [4:]

= ]

o
-
o

0 2 4 6
autocorrelation lag

and the subsequent ACF coefficients are p(1) = 0.9, p(2) = 0.81,...,p(k) = 0.9%.

The exact expression for the power spectrum of this AR(1) process is (coursework,
bookwork)
B 1

|1 + 0.9e—7171|?

¢) i) [application of bookwork and coursework]
i) Here, we need to find adaptively the value of the unknown coefficient a which
generates this process. This will be achieved if the instantaneous output error
of the adaptive filter is white (in this case the “error” is w(n]), and we minimise
the instantaneous estimate of the error power E(m) = 1e*(n). Following the
standard LMS update

Pra(f)

w(n+ 1) = w(n) + pe(n)x(n)

where w are filter coefficients, u learning rate, e(n) is the instantaneous output
error and x(n) the input signal in filter memory, we have

En+1] = a[n]z[n]
ajn+1] = ai[n] + pe[n]z(n]
ii) and iii) [applied bookwork] Same as for standard LMS with length N = 1.

| ¢
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5)
a) [bookwork]

Consider a set of p sensors at different points in space

Let z;,z9,...,z, be the individual signals from sensors

W

XD—"’

1

w2
x, -—=0O
2 .
pr‘ y
xp E];bo
Sensors Weights Adder
e The signals are applied to a corresponding set of weights wy,...,wp

e The weighted signals are them summed to produce the output y

p

y(n) = Zwi:m =x'w

=

¢ Requirement: To determinde the optimum setting of weights w = [wy, . .. ,wp]T
so as to minimize the difference between the system output and some desired re-
sponse d in the mean square sense.

The solution to this fundamental problem lies in the Wiener-Hopf equations

The system from the Figure can be seen as a spatial filter.

The input-output relation of the filter is given by

P
u="3 s
k=1

Let d denote the desired response or target output for the filter. Then the error
signal is

e=d-y

As performance measure or cost function, we introduce the mean squared error
defined as

J= %E{eg}
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(the factor 1/2 included for convenience)

Statement of the linear optimum filtering problem:

Determine the optimum set of weights wy,,...,wp, for which the mean
squared error J is minimum.

The solution to this problem is known as the Wiener Filter

1 ‘ p 1 pp
J= EE{dZ} — 5 {Z wk;z:kd} -+ §E {Z ijwkxj:rk}

k=1 j=1 k=1

where the double summation represents the square of a summation.

1 P 1 2P
J = iE{dz} - ZwkE{mkd} +3 Z ijwkE{a:jmk}
k=1 =1 k=1
Notation: 74 = E{d*}
raz(k) = E{dzi}, k=1,2,...:0
T.‘r(j!k):E{xjxk}ﬂ j}k:laza"':p

Slot back into J to yield

1 p
J = 5?"4 - Z?ﬂk?"dx(k) -+

B
YN wiwera(s k)

k=1 j=1 k=1

Sl

Def: A multidimensional plot of the cost function J verus the weights (free pa-
rameters) wy, . ..,w, consitutes the error performance surface or simply the
error surface of the filter.

The error surface is bowl-shaped with a well-defined bottom or global mini-
mum point. It is precisely at this point where the spatil filter from the Flgure is
optimum in the sense that the mean squared error attins its minimum value Jp,.

To determinde the optimum weights, follow the least squares approach

oJ
= — .Ii,'=1 ..
vwkj 8wk1 ? JI)

Differentiate wrt to wy
p
Vard = —1az(k) + Y wra(j, k)
j=1

and set to zero



Let wqi denote the optimum setting of weight wy. Then the optimum weights
are determined by the following set of mmultaneous equations

P
ZwﬂjTI(jﬂk)zrl‘d(k)i k: 1,2-,---;;0

or in a compact form
-1
Wope = R Tay

This system of equations is known as the Wiener-Hopf equations and the filter
whose weights satisfy the Wiener Hopf equations is called a Wiener filter.

Notice, this is a block filter, operating on the whole set of data
b) [bookwork]

The idea is to replace the block estimate from the Wiener filter with a recursive
estimate on a much shorter data length. This allows for a sequential solution of
this block filtering problem, which facilitates the use of short filters. However
this way we introduce an error in the estimation.

Problem with the Wiener filter: Matrix inversion of the p x p matrix R.

We may avoid the need for matrix inversion
by using the method of steepest descent.

Difference from Wiener Filter: The weights have a time—varying form,

they are adjusted in an iterative fashion allong the error surface.

The gradient of the error surface of the filter wrt the weights takes on a fime
varying form

vwkj( ) = _sz + zwj T:-: j:

(indices j, k refer to locations of different sensors in space, whereas the index n
refers to iteration number).

According to the method of steepest descent, tje adjustment applied to the weight
wi(n) at iteration n is defined by

Awg(n) = =V, J(n),  k=1,2,...,p
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where 7 is a positive constant called the learning rate parameter (step size).

¢) [new example based on coursework]

Both the unknown system and the adaptive filter have the sam input, and their
outputs are compared to produce the instantaneous output error e(k) which is
then used to update the filter coefficients.

/

Adaptive y(k)
Filter
/ e(k) L.
=
i
2,
x(k) Unknown d(k)
Input System Output

Applications include acoustic echo cancellation, plant modellig.

i) This is the cost function of a sign error algorithm. Perform %%— to obtain

0Jn] _ le[n]| _ leln]| deln] dyln]
owln] Owln]  Oe[n]| dy[n] OW[n]

= sign(efn])(~1)x[n]

Now from

win+1 =  winl = sVl wmi
we have the update
wn+1 = wn]+ psign(e[n])x[n]

ii) In very much the same way as above, apply the sign operator to both the error
e[n] and the regressor vector x[n] to obtain

win +1] = wn] + psign(eln])sign (xn])

This algorithm requires lower computational complexity, but cannot achieve the
same steady state accuracy as standard LMS.



