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1) Consider the problem of estimating the value of an unknown scalar parameter,
§, from a sequence of random variables z[n], n=1,2,..., N. The estimate 0 is

a function of N random variables, and will be denoted by 8.
a) Define the notion of bias B in parameter estimation. Define an unbiased

estimate. 2]

b) Define a minimum variance unbiased (MVU), asymptotycally unbiased, and
consistent estimator. [6]

i) Define the term “mean square convergence”. 2]

ii) Is the sample mean estimate 172, = & >~ x[n] unbiased and consis-

tent? ) 2]

¢) Let z be the random variable defined on a coin flipping experiment, with

z = 1 if the outcome is heads and z = —1 if the outcome is tails. The coin

is unfair so that the probability of flipping heads is p and the probability of
flipping tails is (1 — p).

i) Find the mean of z. 2]

ii) Suppose the value for p is unknown and that the mean of z is to be
estimated. Flipping the coin N times and denoting the resulting values
for z by z[i], i=1,...,N, consider the following estimator for m,

., = Z[N]
Is this estimator unbiased? (3]

iii) Does the accuracy of this estimator improve as the number of obser-
vations N increases? [3]
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2) Consider the problem of mixed autoregressive moving average (ARMA) mod-
elling.
a) State the equation of a general ARMA(p, q) process. 2]

i) Derive the expression for the autocorrelation function r.2[k] of this pro-

- cess. What is the expression for the autocorrelation function r,.[k] for
@ L k2q+1? 6]

ii) Discuss the stationarity conditions for this process. 2]
iii) State and explain the equation for the power spectrum of a general
ARMA(p, q) process. 3
b) Consider the process
z[n] = 0.82[n — 1] + wn]

where w(n| is white noise.

@ i) Is the process z[n]/'éationary and invertible? 3]

ii) What are the values of the first two correlation coefficients p[0] and

pl1]? 2]
iii) Write down the expression for the sequence of autocorrelation coeffi-
cients p[k] of this process. 2]
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3) Consider the problem of Minimum Variance Unbiased (MVU) estimation.
a) Define the likelihood function for a random signal z. State the likelihood
function for a single random sample z[0] = A + w[0], where A is the DC
level, and w ~ N(0, o2). 4]
b) Define the curvature of the log-likelihood function. What does the curva-
ture give information about? In your own words explain why it is convenient
to use the log-likelihood function. (6]

c¢) Define and discuss the Cramer-Rao Lower Bound (CRLB) for the scalar
parameter. 5]

d) Consider the estimation of a DC level in white Gaussian noise (WGN), and
assume N observations

z[n] = A+ win] =012 a
where w[n] ~ N(0,0?). Determine the CRLB for A. 5]

: G
( Hint: p(x;A) = We 757 Lo (x[n] A)z)
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4) Consider the method of least squares (LS).

a) State the least squares optimisation problem for the estimation of a vector
parameter. [4]

b) Explain the role of the observation matrix H. In your own words com-
ment on the physical meaning of the vectors making up the columns of the
observation matrix. (6]

c¢) We would like to build a predictor of digital waveforms. Such a system
forms an estimate of a later sample (say ng samples later) by observing p
consecutive data samples, and is given by

P
&fn+nol =) alklafn — k]
k=1
The predictor coefficients a,[k] are to be chosen to minimize
o0
B,= Z (x[n + ng) — &n + nyg))?
n=0

Derive the equations that define the optimum set of coefficients a,[k]. 7]

d) Discuss the advantages of using the method of least squares. 3
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5) Explain the need for adaptive filtering. Comment on the advantages and dis-
advantages of adaptive filters as compared to the Wiener filter (suitability for a
non-stationary operating environment, mode of operation, accuracy). 3]

a) Draw a block diagram of the inverse system modelling configuration and
explain its application for channel equalisation in non—stationary environ-
ments. Is there any delay in the input-output operation of this configura-
tion? 4]

b) Explain the need for an adaptive step size within the Least Mean Square
(LMS) algorithm. Describe in your own words the behaviour of an ideal
adaptive step size. 2]

c¢) Write down the expression for the learning rate of the Normalised LMS
(NLMS) algorithm. [1]

i) Derive the learning rate of the NLMS algorithm by expanding the
output error e(k+1) of the LMS algorithm using Taylor series around

e(k) and setting e(k+ 1) = 0. 4]

ii) Give the physical justification for the use of Nyzurs- [1]
d) An AR(3) process z(n) is generated by the difference equation
z(n) = 1.3z(n — 1) — 0.75z(n — 2) + 0.1z(n — 3) + w(n), w(n)~ N(0,1)

i) Write down the output #(n) of a three—coefficient LMS-type adaptive
predictor for this process. 2

ii) Write down the expression for the NLMS weight updates of such an
adaptive predictor. 3]
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1) a) Bias B =60 — {0y}
If the bias is zero, then the expected value of the estimate is equal to the true
value, i.e. F{fy} =0 and the estimator is said to be unbiased. [bookwork]

b) An MVU estimator is unbiased and attains the Cramer Rao Lower Bound.

An estimator is asymptotically unbiased if an estimate is biased but the bias goes
to zero as the number of observations, NV goes to infinity, that is

<L

lim E{0y} =0

N—oo
An estimator is consistent if it is unbiased in the mean squared error sense.
[bookwork]

i) An estimate 0 is said to converge to # in the mean square sensc if [pookwork]
lim E{|0n -0’} =
Aim E{|0y - 0]} =0

i) The sample mean estimate is unbiased, since £{m.} = SN E{z[n]} = m,.
Since the variance of the sample mean estimate is

2
Iz

var{m,} = iz i var{z[n|} =
N N

n=1
which goes to zero as N — oo, it follows that the sample mean is a consistent
estimator. [application of theory]
c) i) mg=FE{z}=p-1+(-1)-(1—p) =2p— 1. [new computed example]

it) For an estimator 7, = z[N], the mean is
E{r.} = E{z[N]} =2p—1

and the estimator is unbiased. However, 1, = z[N] is not a good estimator of
the mean. [new computed example]

iii) The estimate of the mean, /. will either be equal to one, with probability p or
it will be equal to minus one, with a probability of (1—p). Therefore the accuracy
of the estimate E{r;} = z[N] does not improve as the number of observations
N increases. The variance of the estimate

var{m;} = var{z[N]} = 4p(1 — p)

does not decrcase with N. The estimator does not converge in the mean square
sense and is therefore not consistent. [combination of theory and a new
example]



2)
a) For an ARMA(p,q) random processes z[n], the process z[n] and driving noise
w(n] are related by a linear constant coefficient equation [bookwork]

P q
z[n] = Zap(l)z[n -+ Z b(Dwln — 1]

i) The autocorrelation function of z[n] and crogs[éorrelation between z[n] and w(n]
follow the same functional expression as that of an ARMA(p,q) model above.
Multiply both sides of the above equation by z[n — k] and apply the statisti-
cal expectation operator, to yield [combination of bookwork and worked
example]

raslk] = Zap(l - —£]+Zb )

Since for k > ¢+1, there i is no correlation between 2[n] and w(n], the ACF follows
the AR part of the above equation, that is

raz(k) = iap(f)rm[k -1 for k>gq

1=1
ii) One representation of a stochatic process is as an output from a linear filter,
whose input is white noise w[n], given by

z[n] = wln] + aywn — lagwin — 2] + -+ = win] + Zajw[n — 7]

(weighted sum of past inputs w(n]).

For this process to be a valid stationary process, the coefficients must be abso-
lutely summable, that is, 32> |a;| < 0.

Under some mild conditions, z[n] can also be represented as a weighted sum of
its past values, and an added random “shock” wn], given by

zn] =bizln — 1] + byz[n — 2] + - - - + win]

This process is stationary if 3337, |a;| < oo, and is invertible if 3372, b;| < oo.
[bookwork]

iii) From the Z-domain representation of an ARMA(p,q) process, we have
g —k
II(Z) - Bl?(z) - Ek:;;] b".’(k)z
Ap(2)  1+37% ap(k)2*

Assuming that the filter is sta.b]e the output process z[n] will be wide-sense
stationary and with P, = o2, the power spectrum of z[n] will be

L By(9)By(e)
B8 = 0w g A,



or in terms of frequency 6
R L

[bookwork]

b)

i) This process is invertible since |a;| = 0.8 < 1, and is stationary due to the
stationarity of w[n|. [application of theory]

ii) This is clearly an AR(1) (Markov) process. Hence p[0] = 1,p[1] = 0.8. [ap-
plication of theory]

iii) For this AR(1) process, we have plk] = 0.8%, k > 0. [application of
theory|

S\



3)[parts a), b), ¢, bookwork]

a) When the PDF is viewed as a function of the unknown parameter (with the
dataset x fixed) it is term the “likelihood function”.
For the random variable z[0] = A + w[0] we have

In p(z[0]; A) = —InV2m0? — #(x[o] — A)?

b) The “sharpness” of the likelihood function determines the accuracy with which
the unknown parameter may be estimated. This sharpness is effectively measured
by the negative of the second derivative of the logarithm of the likelihood function
at its peak - the “curvature” of the log-likelihood function. Generally, the second
derivative does depend upon z[0], and hence a more appropriate measure of
curvature is

B [32“& 2%01; A)}

which measure the average curvature of the log-likelihood function.

Applying the logarithm to the likelihood function helps with mathematical tractabil-
ity, especially for Gaussian signals, since the products are converted into sums
and also the exponentials are avoided.

¢) Cramer-Rao Lower Bound-Scalar Parameter

Under the assumption that the PDF p(z;0) satisfies the “regularity” con-

dition
L [0l p(z;0)] _
L[ L ]_o Vo

where the expectation is taken with respect to p(z;0), then, the variance
of any unbiased estimator ¢ must satisfy

1
_E {821?‘1 B .’..';0)}

062

Va’r(é) =

where the derivative is evaluated at the true value of 6.

Moreover, an unbiased estimator may be found that attains the bound
for all 6. If and only if

I P& 0) _ 1(0)(g(a) - 0)

for some functions g and 1.



That estimator is the MVU estimator, with § = g(z) and the minimum variance
1
HOM

d) [application of theory]

To determine the CRLB for the estimation of a DC level in WGN, assume N
observations

z[n] = A+ win] =0, 1,2, N —1

where w[n] ~ N (0, ¢?), and

i 1 )
p(z;0) =[] TP [_?._z(x[n] —=A) ]

1 i, 2= )
= o7 exp [_@ Zﬁ(zz:[n] — A)

Take the first derivative of the log-likelihood function to yield

. N-1
%&%’AJ = % [—In [(2ﬁ0_2]Nf2 — 2;2 ZO(:B[TL] — A)?
N-1
= = Y (el - 4) = (5~ 4)

where Z is the sample mean.
Differentiate once again to have
FPlnplz; A) N

dA? o2
Therefore Var(A) > % is the CRLB.

<
1
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4) a) [bookwork] LSE is found by minimising

N-1

J©) = (aln] —s[n])?
= (z— HY)"(z— Ho)
=alz— 22" HO+ 9T HT HY

oJ(@) _ —2H 2+ 2HTHO

set the result to zero to yield
E s (HTH)_IHTQ

= (HTH)) = H 'z The “normal” equations

b) Geometrical interpretations [combination of bookwork and application
of theory]

Given s = Hf

= [ hy... ]

=Zo¢,§

Signal vector model is the linear combination of the “signal” vectors {hh,...h,}
Therefore, to determine s, we use the so-called orthogonality condition

(z—s) LS
= (-8 lh —(z—38)" by=0 A
(z—38) Lh — (z—8)T-hy=0 B

to yield the LSE X

ﬁ — (HTH)_IHTQ
Noting that
HY

§=

@ _—
is the error vector the LSE is found by



&

the error vector must be orthogonal to
e"H=0" — the columns of H - this is the “Orthogonality Principle”

The error represents that part of  which is not described by the signal model.

¢) [new example]

We want to find the predictor coefficients a,[k] that minimise the linear predic-
tion error [, =Y >  (e[n])?
To find these coefficients, differentiate £, with respect to a,[k] and set the deriva-
tives equal to zero as follows

ZQ [ ]3x[n+ng] _0

30,
From #{n +no] = Y2, aplkafn —K = bl _ g
Divide by two, and substitute for e[n] to have,
o0 P
> {af;[n+ng] = alllaln —s]} gn—k =0 ; k=1,2,...,p
n=0 =1
Therefore we obtain the normal equations
P 00
> ap[liralk, ) = ralk, —no] where r.fk,l) = z[n— lafn— k]

1=1 n=0

d) [bookwork and above example]

No probability assumptions are made about the data; only a signal model is as-
sumed. Usually easy to implement, either in a block based or sequential manner,
amounts to the minimisation of a least squares criteria. In the (LS) approach we
attempt to minimise the squared difference between the observed data and the
assumed signal or noiseless data.



5) [bookwork]

Suitable for filtering of nonstationary data and sequential mode of operation.
Due to the approximations in the derivation, in the steady state they are not as
accurate as Wiener filters, but are much less complex and capable of an on-line
mode of operation.

a) [bookwork and intuitive reasoning]

The adaptive filter is in cascade with the unknown channel and aims at estimat-
ing the inverse of the channel model. Application: adaptive channel equalisation
in telecommunications, wher an adaptive system tries to compensate for the pos-
sibly time—varying communication channel, so that the transfer function from the
input to the output (Figure below) approximates a pure delay. We need a delay

__{ Unknown Adaptive

System [ Filter

RSP LRSS, De{ay

| x(k)

in the system, since we arc dealing with sampled data systems and need time to
propagate signals through filters.

b) [bookwork and intuitive reasoning]

In order to cope with the nonstationarity of a signal and changing signal dynamics
we need adaptive step sizes. Ideally, a step size would be large in the beginning
of adaptation and small when approaching the optimal Wiener solution.

¢) [bookwork] nyrys = ||x(i)u2

i) [v\;orked example]

P
e(n+1)=e(n)+ Z 8?116:2) Awg(n) + Higher Order Terms
k=1

Inserting the partial derivatives from the above, we arrive at

e(k+1) = e(k) [1 =7 || x(n) |3]

NS



From there the NLMS step size which minimizes the error is

1
TINLMS = T =i~ T12
I x(n) 113

ii) [bookwork and intuitive reasoning]

Normalisation of the learning rate by the tap input power helps with the condi-
tioning of the error performance surface, and hence faster adaptation.

d) [new example]
i)
£(n) = w,(Vz(n — 1) + wa(2)z(n — 2) + w,a(3)z(n — 3)
ii)
1
22(n— 1)+ 22(n — 2) + z2(n — 3)

Wy 1(k) = w,(k) + e(n)z(n—k), k=1,2,3



