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1) Consider the autoregressive moving average (ARMA) modelling.
a) State the expression for a general second order autoregressive AR(2) process
z{n]. 2]

i) Derive the autocorrelation function for this process. Can you write the
expression for the autocorrelation function directly from the expression
for the AR(2) process? Explain. 4]

ii) What is the set of stability conditions for this process (stability trian-
gle)? Explain the bounds on the AR parameters for an AR(2) process
to be stable. What are the four possibilities for a general shape of the
autocorrelation function and spectrum? (6]

b) Consider the process given by
z[n] = 0.92[n — 1} — 0.4z[n — 2] + wn]|
where wn] denotes samples of white Gaussian noise. Is the process z{n]
stable? (2]
In order to determine the AR parameters for process z[n}, state
i) the Yule-Walker equations. (3]

ii) the spectrum. Is the spectrum dominated by peaks, or it is flat? (Hint:
we have an all-pole system) (3]
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2) Consider the problem of least squares (LS) estimation.

a) State the least squares error criterion. What is the goal of least squares
estimation with respect to the least squares error criterion? (4]

i)
ii)

iii)

For linear least squares explain how the dimensions of the signal and
data spaces in LS estimation are related. 4]
Explain how the columns of the observation matrix H are related to the
signal model and what makes it possible for the error to be orthogonal
to the estimate. 3
Wiener-Hopf and Yule-Walker are solutions of the least squares prob-
lem. Which one is related to the deterministic and which one to the
stochastic error function J (in terms of some measure of the output
error e(n))? 2]

b) We want to model signal z(n) using an all-pole model of the form

i)

1
T I+ (k)2
Derive the normal equations that define the coefficients a,(k) that

minimise the error (Hint: Found by setting the derivatives of Ej, with
respect to coefficients a,(i), i=1,...,p to zero)

H(z)

where
e(n) = z(n) + Y _ ap(Nz(n 1)
=1

and derive the expression for the minimum error (Hint: use the or-
thogonality condition). 7
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3) State the aim of minimum variance unbiased (MVU) estimation. [2]

a) Give a simple example of a likelihood function for a random signal z. 2]
i) Explain in your own words the meaning of “sharpness” of this functiOﬁ]

ii) How do we quantify the sharpness of a likelihood function? What is
the relation between the Fisher information matrix and curvature of
the log-likelihood function? (2]

iii) Define the “regularity condition” within the Cramer—Rao Lower Bound

(CRLB) for scalar parameter. Give an interpretation of this conditio[%]

iv) Define an efficient estimator. (2]

h) Describe the need for linear models within MVU estimation. Write down
the expression for a simple first order random linear model. 2]

i) Write down the expression for a linear model in a compact vector-
matrix notation and explain the terms in that equation. (2]

i) State the Cramer Rao Lower Bound theorem for linear models. {2

iii) A linear model is used for system identification and is given by
p—1
o)=Y hlkun -kl +wln]  n=01...,N-1
k=0

where z[n) is the output of the system, h[n] are the unknown filter co-
efficients, u[n] is filter input, and win] denotes additive white Gaussian
noise. Write down this data model in its vector-matrix form. Denote
the observation matrix and the parameter vector. (2]
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1) State the problem of optimum linear filtering (Wiener problem). 2]

a1 Derive the method of steepest descent. (2]
i) Define and sketch a simple error surface. 2]

ii) Explain the role of learning rate. 2]

iii) What are the advantages of this method over the standard Wiener
filter? 2]

iv) Write down the cost function for the steepest descent method. 2]

b The coefficient update equation of least mean square (LMS) adaptive filter
is given by

w(n+1) = win) + pe(n)x(n)

where w is the coefficient vector, u is the learning rate, e is the filter error
and x is the input vector. The block LMS algorithm, on the other hand,
accumulates these corrections for L samples, beginning at time n while
holding the weight vector w constant. A correction term is then applied at
the end of the block to form an update at time (n + L) as follows

L-1

w(n+ L) = w(n) + “Z e(n + )x(n+1)
1=0

where
e(n+ ) =dn+l)-win)x(n+1), 1=01,...,L-1

i) In your own words, discuss the advantages /disadvantages of the block
LMS algorithm compared to the standard LMS. 4]

ii) By evaluating the behaviour of £ {w(n)} as a function of n, discuss
the conditions for the step size p so that the filter converges in the
mean (E{w(n)} — constant, when n — co). 4]
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5) A simple extension of linear finite impulse response (FIR) adaptive filters is a
nonlinear FIR filter shown in the Figure 5.1. The nonlinearity ® is a saturation—

type

y(k)

nonlinear function, such as tanh, and the output of this filter is given by
= &(xT(k)w(k)). In the stochastic gradient setting, the cost function for

this filter is based on the minimisation of the squared instantanous output error
and is given by

a)

b)

d)

x(k)

E(k) = %ez(k)

Give the reasons for this nonlinear FIR filter also being called a “dynamical
neuron” . (4]

Derive the weight update equation for this filter based on the cost function
given above and the gradient descent approach (Hint: Aw(k) = -7V« E (k).
(8]

Explain the difference in the way this filter and the standard FIR adaptive
filter trained by the LMS algorithm process signals with large dynamical
ranges. Which structure do you expect to perform better when filtering
nonlinear signals? (2]

If the nonlinear function ® is the tanh function, explain the effect of the
saturation within the output of the filter has on the learning process (Hint:
Cases when the operating point moves towards the tails of the nonlinearity,
where the gradient values are very small). 2]

i) What is the effect of saturation-type nonlinearity on the output mag-
nitude range? 2]

ii) Propose a way to improve the output range of this structure. 2]

o x(k-1) —[——Z_l—‘ x(k-2) J\E—‘j - x(k-N+1)

? w (k) wo(k) w3 (k) wy(K)
‘ ~D—=
d y(k)

Figure 5.1: A nonlinear FIR filter
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Solutions:

Ia) ﬁ
z[n] = ayz[n — 1] + agz[n — 2] + w(n] ['2.-]

where ay, ay are the model parameters and {w{n]} is the driving white noise.

i1 By applying the expectation operator E{-} to
z[n — k]z[n] CH 1
we see that the ACF model follows the general form of the AR(2) process. There-
fore we have
p(k) = arp(k — 1) + azp(k — 2)
where p(0) = 1.

1) Using the results for AR(1) and extending for AR(2) model, we can derive
the bounds on stability for AR(2) processes, which in a convenient way can be

put within a “stability triangle” shown below. Obviously the stability conditions
are —2 <ay < 2,—-1<a; £1.

Cal

bh) The process is stable, by inspection from the above stability triangle.
i} The second order variant of the general Yule Walker solution.

Substituting p = 2 into the general form of Yule-Walker equations, we have C 2—]
pL = Gy + aspy CB}
P2 = a1p1 + a2 »

which when solved for a; and a, gives

o = pi(l —pa)
] 1—pf
0, = P2 A1
1-n
i}
202
PZZ . = L
) 11— ae=92mf — age=24i|?
202 , .
= f : . 5 0<f<1/2
1+ a? + a3 — 2a;(1 — aycos(27 f) — 2az cos(4n f)) ] / L %J

Due to the all-pole system, the spectrum is dominated by peaks.



4

Complex Rodts

Figure 1: AR(2) Stability triangle. Region 1: Decaying ACF, Region 2: Decaying
oscillating ACF, Region 3: Oscilating pseudeperiodic ACF, Region 4: Pseudope-
riodic ACF

2) aj
e The Least Squares Estimator of ¢ chooses the value that makes s[n] closest to
the observed data z[n], where closeness is measured by the LS error criterion

LSE: min, J(6)

Note. 10 probabilistic assumptions have been made about the data z[n] i) The
sienal sub-space is spanned over the columns of the observation matrix and is
normally of lower dimension than the data space.

ii) The columns of the observation matrix define the vector space in which the
signial resides. Therefore signal model is built as a linear combination of those
vectors. Therefore the estimated values are a projection onto the signal subspace,
and the estimation error is therefore orthogonal to the estimated signals.

iii) We draw a distinction between stochastic and deterministic measures

{a) Stochastic

J = min E{le(n)|"}
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b Deterministic

= m}}nz le(n)|?

Wiener—-Hopf — stochastic, Yule-Walker — deterministic.
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Define

o0
E r(njz(n — k)
n=0

Thus the normal equations become

S ap(Uhralh = 1) = =ra(R)
=1

The minimum error becomes (using the orthogonality condition)

4

Epnn = 14(0) + 2: ap(Dra(1)

=1

226 (n —
= - Zax(n)x(n -

_0o Ct)



3) To formulate lower bound on the variance of any unbiased estimator.

a) The likelihood function is a probability density function defined in terms of
the unknown parameter to be estimated, that is p(z, ¢). For example, for a single
sample 2[0] = A + w|0], where w[0] ~ N(0,0?).

/ . 1 1 9

plalol A) = ——serp | =55 (al0]  4)
i) Bu sharpness we mean the variance of the likelihood function. The "narrower”
the likelihood function the better the estimate.
1) Via the so called ”curvature”. This is the negative of the second partial
derivative of the log likelihood function at its paek, with respect to the unknown
parameter, given by

_62ln p(z0); A) 1

0A? 0?2

Therefore, as expected, the curvature increases as o2 decreases. The Fisher in-
formation is related to the expected value of curvature.

ii) This is the necessary condition within the CRLB theorem.

The PDF p(x; ) satisfies the “regularity” condition if

B[] o

where the expectation is taken with respect to p(z;8). THis is closely related to
the bias of the estimator.

iv) An estimator which is unbiased and attains the CRLB is said to be “efficient”
in that it attains the CRLB and efficiently uses that data.

)
e Generally it is difficult to determine the MVU estimator

e [n signal processing, however, a linear data model can often be employed
for which it is straightforward to determine the MVU estimator

e Simple example is to fit a straight line through noise corrupted data; assume
z[n] = A+ Bn + wn] n=01,...,N—1
where wln] ~ N(0,0?) B - slope and A - intercept
1) This data model can be written more compactly in matrix notation as

r=Hf+w
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where ¢ = [z[0]2[1]... 2 [N - 1]]"

1
H=1 :
1 N-1
¢ = [AB]"
w=[w0wl].. w[N-1]"
w ~ N(0,0°)

i) If the observed data can be modelled as V)
r=H0+w
o 1s “observation factor”
Le H is Nxp “observation matrix” (Nxp) Rank p
viere .
hern f is px1 “parameter vector”
w

is Nx1 “noise vector” ~ N(0,021)

The MVU Estimator 1s

-1

9= (H"H) H'z

with covariance matrix
2 T 7y~ 1
Cé =0 (H H )

Note the statistical performance of ¢ is completely satisfied because ¢ is a
linear transformation of a Gaussian vector z, 1.e.

o~ N (0.0*(H"H))

1

)
u[0] 0 ... 0 h(0)
- u[l1] u[0)] . 0 h(1)
WN—1 uN=2 . uN=-p || re-1)
H 0

w~ N(0,0%])



4) Determine the optimum set of weights for which the cost function attains
1t minimum.
aj 1). i), iii) and iv)
Problem with Wiener filter: Matrix inversion of the p x p matrix R.
We may avoid the need for matrix inversion by using the method of steepest
descent.
Error surface: a quadratic surface defined by the cost function, for varying weight
vectors. The weights here assume a time—varying form, and their values are
adjusted in an iterative fashion allong the error surface with the aim of moving
them progerssively toward the optimum solution.
It is intuitively reasonable that successive adjustments applied to the tap weights
of the filter be in the direction of steepest descent of error surface, that is
i a direction opposite to the gradient vector whose elements are defined by

Ve J k=1,2...,pIn a corresponding way, the gradient of the error sur-
J & Mean
Squared
Error
di/dw
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Wo w(n+l)  w(n)

P

Figure 2: The method of steepest descent
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tace of the filter wrt the weights takes on a time varying form
Vwkt](n) = _Tdm ‘|' E w] Tz ]a )

(indices j, k refer to locations of different sensors in space, whereas the index n
refers to iteration number). According to the method of steepest descent, tje
adjustment applied to the weight wy(n) at iteration n is defined by

Awg(n) = =NV, J(n), k=1,2,...,p

where 7 is a positive constant called the learning rate parameter (step size).
Given the old value of the kth weight wy(n) at iteration n, the updated value
of this weight at the next iteration (n + 1) is computed as

wi(n 4+ 1) = wp(n) + Awg(n) = we(n) — NV, J(n)

The updated value of the Wiener filter = the old value + correction

Finally. we have
wi(n + 1) = we(n) + 0 |74z (k Zw Yyre(7, k)1, k=1,...,p

The SD method is exact in the sense that there are no approximations made in
the derivation.
The derivation is based on minimizing the mean squared error

Tn) = 5B )

I'he cost function is an ensemble average taken at time n over an ensemble of
spatial filters. The SD method can also be derived by minimizing the sum of
error Squares

i

gtotal - Z g Z ('L)

i=1
hi i) Advantage: more accurate than LMS (due to averaging), and lower misad-
justment. Disadvantage: more difficult to track rapidly varying processes. C Y ]
1]
E{w(n+ L)} = E{w(n }+/LZE{en+l x(n+1)} Y

= E{w(n)} + u i: E{ld(n+1) = w'(n)x(n + D)]x(n + 1)}

= (I - pLRao) E{w(n)} + pLre



Therefore, we set first term to zero to obtain

O<pu< —
,ll LA'IH(ML'

It suffices to state the above expectation and describe in your own words that we
need to minimise it.



5) a) Or Dynamical perceptron. The structure us an electrical model of a
penron from the brain. It has its synaptic part (delayed inputs and weihts) and
somatic part (summation and nonlinearity).

b Identical procedure as for the LMS, with the exception that we need to account
for the nonlinearity within the structure. The final update is

w(k + 1) = w(k) + ne(k)®' (x" (k)w(k))x(k)

1 The FIR filter trained by LMS is linear and is not sensitive to the amplitudes
of the signal. This filter has a saturation type nonlinearity and is sensitive to
the changes in the signal dynamics. The nonlinearity can be thought as having
a quasilinear range and a saturation range, hence nonlinear distortion of signals.
1) The output magnitude range is limited to the range of the nonlinearity

ii) Have an adaptive amplitude activaton function, or other forms of range reduc-
tion prior to filtering and range extension after filtering.
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