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Special Instructions for Invigilators: None

Information for Candidates:

Sequence z-transform
o(n) 1
1
u(n) 1~z
_
a”u(n) 1—az7!

Table 1 : z-transform pairs

d(n) is defined to be the unit impulse function.
u(n) is defined to be the unit step function.

Numbers in square brackets against the right margin of the following pages are a guide to the
marking scheme.
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(a)

(b)

(c)

(d)
(e)

Consider a Bartlett window for N odd,
[2n-N+1
N+1

wy(ny=1- 0sn<N-1

and a rectangular window function
I, 0sn<(N+1)/2
w,(n) = | .
0, otherwise
Let N=21.

Show that the Bartlett window can be obtained from

2 *
N+1{Wr Wr‘}

where * indicates convolution.
Draw a labelled sketch of the Bartlett window.
Show that the Fourier Transform of w,(n) can be written

2sin? (0.256(N +1)) - j0.5O(N~1)
— e
(N +1)sin’(0.56)

Wy (k)

You may use the result that the sum of the first M terms of a geometric series
a(l—r")

1—r

a+ar+ar’ +... can be written as

Derive the value of |WB (O)| .

Sketch the function IWB (k)| . It is only necessary to show the significant features and

general shape of the function.
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A type of FIR filter of even order N =2M has coefficients 4(n)=—h(N —n) and
h(M)=0.

Show that the frequency response of the filter can be written in the form

M-l

H(@)=e"> 2 h(n) sin(B)

and write out the expressions for 4 and B.

Deduce the following properties of H(8):
(1) the phase of the frequency response at 8 =0.

(i1) the magnitude of the frequency response at 8 =0, 7 and 27 .

Briefly propose a suitable application for this filter using a short paragraph of
description and, if appropriate, a sketch graph.

A particular design of this type of filter has

N=6
h(0)=1.0
A(1)=0.5
h(2)=-0.3

Compute the unit step response of this filter.

Sketch a plot of the magnitude of the frequency response.
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(OS]

Define the DTFT of a sequence x(n).

Discuss the differences and relationships between the DTFT and the DFT and, hence,
formulate an expression for the DFT from that of the DTFT.

The difference equation of a causal system H{(z) is of the form

y(n)= Zaky(n—- k)+x(n).
P

By considering the impulse response of this system, find H(e’”) at the frequencies

w, =2nk/4, k=0,1,2,3 giving your answer in terms of the coefficients a; .

Summarise briefly how you would test whether H(z) represents a stable system. Give
particular consideration to two cases:

(i) p=2 (i) p=16

4. (a) State the definition of the DFT X(k) of a sequence x(n). If x(n) is a 2-point sequence,
determine its DFT.

(b) Show that a 4-point DFT can be expressed in terms of two 2-point DFTs. Illustrate your
solution using a signal flow graph and include equations for all nodes of the flow graph

as well as the outputs.

(¢) (i) Derive the complexity of the DFT of N samples in terms of the number of
complex multiplications. State any constraints on N.

(ii) Derive the complexity of the Radix-2 Decimation-in-time FFT of N samples in
terms of the number of butterflies. State any constraints on V.

(iii) Hence determine the ratio of the complexity of the DFT to the complexity of the
Radix-2 Decimation-in-time FFT for N = 1024, given that each butterfly operation

requires one complex multiply.

(iv) Repeat the complexity comparison of part (iii) for N = 1025.
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(a)

(b)

(2)
(b)

(©)

(d

Consider a real data sequence x(#) and two related sequences:
x,,, (n) obtained by decimating x(n) by a factor M and

x;,(n) obtained by expanding x(r) by a factor of L.

Prove that, if M and L are coprime then

(’xiM )T[_ (}’l) = (xTL ),LM (l’l)

For x(n) written as the sequence { x(0), x(1), x(2), x(3), ... }, verify this theorem by
determining the sequences for (x Lt ) 1 (n) and (xT L ) L (n) for the two cases

G  M=3, L=2,
G)y M=6 L=4.

Let x(n)y=a", n=0.
Write down expressions for

(1) X(z), obtained by taking the z-transform of x(n)
(i1) X1, (1)
(111) X,,,(z), obtained by taking the z-transform of x, (n)

l M-1 Zl/MW-m
and show that X, (z) can also be written — Z M

—_—— where W), has the
M m=0 z WM -

usual meaning.

Note that it is sufficient to state, without derivation, any multirate identities employed.

A recursive digital filter is described by the difference equation
y(n)=bx(n)+ay(n—1)+a,y(n-2).

The filter’s magnitude response has unity gain at a normalised frequency of 7/2 and
20dB of loss at frequencies of 0 and 7.

Draw a labelled sketch of the magnitude response.

Consider suitable approximate locations for the poles and zeros of the filter and sketch
them on a z-plane plot. Include a brief explanation of your reasoning.

Determine specific values for by, a, and a, and draw a labelled signal flow graph for
the filter.

Sketch the phase response of your filter.
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From the convolution sum
yn)=w *w = 2 w, (m)w, (n—m)

or the graphical method we obtain two straight line segments of unit gradient.

Consider the term 2n-(N-1) for two cases:

2n<N-1:
wy(n)=n+1

2n> N —1:
wy(n)=N-n
and hence we obtain the expression for w,(n).

To derive the FT, first consider the rectangular window of length M which has FT given by
0 1—e™ ™  2e7°M75in(OM /2) _sin(OM /2) e-jgw-n

W (k)= — = .
Z(; 1-e 2¢7 % 5in(@/2) sin(@/2)
The convolution in the time domain gives rise to multiplication in the frequency domain so that
JZ

2 [sin(@M 12) -
€

M-1

W. (k)=
5 (k) N+1| sin(@/2)

1
hence

and for our case we require M =

2 ( SINON +D/4) -5 jz

W, (k)=
5(k) N +1 sin(@/2)
2 sinz(e(N+1)/4)e-f§<N-n
N+1 sin*(8/2)
For @ — 0, we have

2 (025(N+1)Y N+1
W, (0),_,, = = =11

¥ s N+1( 0.5 ) 2
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M-1 _ 2M ‘
H()=Y h(n)e ™+ Y h(n)e™
n=0 n=M+1

M-1 0
=Y h(n)e "+ Y h(N-n)e /"
n=0 n=M -1

M-l ) M-l ‘
=Y h(n).e + Y h(N —n).e /" °
=0 n=0

A M-l _ M-l .
=¢ M0 [2 h(n).e” ™™+ h(N —n).e "™ }
n=0 n=0
_ M-l
= /"MON h(n).2sin (O(M - n))
n=0
Because filter has zeros at nm, not suitable for highpass or lowpass or bandstop applications. Can be

used for bandpass.
Unit step response: 1.0 1.5 1.2 12 15 10 0

Magnitude response:
Zeros at 0, pi and at @ whenever (8(3—n))=0,7,...

Page 3 of 8



X ()= i x(n)e ™"

DTFT is computed over an infinite range of n and yields a continuous function of frequency. DFT is
computed over a finite range of n and yields a sampled version of the DTFT, sampled at equal
intervals around the unit circle in z.

27

To obtain the DFT from the DTFT, let @ be replaced by k@,, @, = NT

Frequency response at these frequencies can be found from the DFT of the first 4 samples of the
impulse response.

Impulse response:

h(0)=1
h(1)=q,
h(2)=aq, +a,

h(3) =a/(aa, +a,)+a,a +a,

Frequency response (from DFT):
H(e’®) = h(0)+h(l) + h(2)+ h(3)
H(e'™) = h(0)~ jh(1)—h(2)+ jh(3)
H(e*) = h(0) - h(1)+ h(2)— h(3)
H(e"™)=h(0)+ jh(l)—h(2) - jh(3)

Stability:
e For p small, root finding is feasible and stability can be shown for cases when all the roots
have modulus less than unity.
e For p large, root find is not feasible but the Schur-Cohn test can be employed to obtain the
parcor (reflection) coefficients and stability can be shown if all such coefficients have
modulus less than unity.
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N-1

4@ XK= xme ™ k=0,12,.,N-1
0

For N = 2, X(0) = x(0) + x(1) and X(1) = x(0) — x(1).

(b) The solution comes from a decimation-in-time of the input sequence, giving rise to a reordering of
the samples, 2 2-point DFT's and the recombination equations.

(¢) @)
(i)

(iii)
(iv)

X,(0) = x(0) + x(2)
X,(1)=x(0)—x(2)
X,(0) =x(1)+x(3)
X,(1)=x(1) - x(3)

X (0) = X,(0)+ X, (0)
X(1)=X,0)+W, X, (1)
X(2)=X,(0)~ X,(0)

X(3)=X,1)-W,X,(1)

The complexity of the DFT is N * for any N.

We always require N/2 butterflies to calculate the 2-point DFTs.
N
The number of subsequent recombination stages satisfies oK =2 sothat R=log, N 1.

The number of butterflies equals the number of stages times the number of butterflies per
stage.
Total number of stages (DFTs plus recombination) is log, N .

Number of butterflies per stage is always N/2 hence total is %’—logz N.

N must be integer power of 2.

For N = 1024, DFT requires 1048576 and FFT requires 5120 giving a ratio of 204.8.

For N = 1025, it is not possible to use the FFT directly. It is necessary to zero-pad first

thereby increasing the length to the next integer power of 2, i.e. 2048. The complexity of
DFT stays the same but the complexity of FFT becomes 11264 giving a new ratio of 93.1.
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From the definitions we have
x(nM /L), nM divisible by L

(le )TL (n) = {0,

( ) - x(nM /L), ndivisible by L

X. n)=

TL/im 0, otherwise

When M and L are coprime, nM is divisible by L iff # is divisible by L.

otherwise

For M=3, L=2, both sequences are { x(0), 0, x(3), 0, x(6), 0, ... }.
For M=6 and L=4 we have the counter example:

(’%M )TL (n)={x(0), 0, 0,0, x(6),0,0,0,x(12),0,0, ... }
(41,),,, ()= { x(0). 0,x(3), 0, x(6), 0, ... }.

0 X(z)=—
-
(ii) x,, (M=a™, n20
Z
(iii) XiM (2)= v

1 M-1 .
We can use the general expression, without derivation, that X | (z)= I E X (z”MWM ) The
=0

final result is obtained by substituting the solution of (i) into this expression and replacing z with

Zl/MWA,;m .
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We can write the transfer function as
-2
b,z
(Z _ﬂejﬂIZ)(Z _le—jﬂ/Z)

H(z)=

To satisfy the design criteria we require

|F(e")|=1 for “’:% and
|H(ef‘“)\=o.1 for @ =0,7

This yields simultaneous equations:

by ~=land by >
1-4 1+4

which can be solved to show A =0.9045 and b, =0.1818.

=0.1

x(n) 0.1818 y(n)
- O — >

t
-0.8182 72

Since the frequency response is real at frequencies of 0, pi/2 and pi, the phase must be zero a these
frequencies. The phase angle at other frequencies can be determined graphically as

2 angles to all zeros — 2 angles to all poles

for a small number of frequencies. It is only necessary to correctly show the zero crossings and general
shape of the phase response in order to obtain full marks for this part of the question.
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