
 1

Specimen Paper - new format 2003

VHDL & LOGIC SYNTHESIS

Examiner: T. J. W. Clarke

There are FOUR questions. Answer Question 1 and any TWO of Questions 2,3,4.

Question 1 carries 40% of the total mark, all other questions carry 30% of the total mark.

 2

1. All eight parts of this question carry equal marks.

a) Write a VHDL entity and architecture that implements a multi-input OR gate with an arbitrary length
std_logic_vector x as input and output y.

[5 marks]

b) Describe clearly ways of writing a synthesisable clocked process with and without a sensitivity list, and
give an example of a process that could implement a 7 bit negative edge triggered counter with
asynchronous clear and synchronous set.

 [5 marks]

c) Describe precisely the hardware synthesized from each and, or, xor, =, +, - operator in the process
shown in Figure 1.1.

[5 marks]

d) Write a synthesizable architecture for entity compare in Figure 1.2 such that, if a,b are interpreted as
signed integers and c,d as unsigned integers:

x = a > b

y = a < c

z = (a=b) and (c=d)

w = 4 LSB of c if a > 0, otherwise 4 MSB of d.

[5 marks]

e) The architecture in Figure 1.3 is part of a testbench and generates signals a,b,c,d. Draw a dimensioned
timing diagram showing the waveforms and simulation times of events on signals a,b,c,d for the first
20ns of the simulation.

[5 marks]

f) Write a VHDL entity add which implements a 4*n bit adder with inputs p,q each 4*n bits long and
output r 4*n+1 bits long, using n instances of the 4 bit full adder entity shown in Figure 1.4, which adds
p and q with cin to generate sum r and carry out cout.

[5 marks]

g) Explain, with reference to the entity compare in Figure 1.2, the terms exhaustive testing and corner case
in test methodology.

[5 marks]

h) Write a (non-synthesisable) function funny that returns TRUE if there is currently an event on its
std_logic input x, and either the previous or new value of x is not '0' or '1'.

 [5 marks]

 3

ENTITY clocked IS
GENERIC(n: INTEGER := 4);
PORT (a,b: IN std_logic_vector(7 DOWNTO 0);

x,y: OUT std_logic_vector(7 DOWNTO 0);
z: OUT std_logic);

END ENTITY clocked;

ARCHITECTURE rtl OF clocked IS
BEGIN
P2: PROCESS(a,z)
VARIABLE j: INTEGER;

BEGIN
x <= signed(a) (- 1 + (n MOD 3));
y <= b xor conv_signed(255,8);
FOR i IN 0 TO n LOOP

j := i - 1;
z(i) <= a(i) and (b(i) or c(j));

END LOOP;
END PROCESS P2;
END ARCHITECTURE rtl;

Figure 1.1

ENTITY compare IS
PORT (a,b,c,d: IN std_logic_vector(7 DOWNTO 0);

x,y,z: OUT std_logic;
w: std_logic_vector(3 DOWNTO 0);

);
END compare;

Figure 1.2

 4

ARCHITECTURE behave OF testbench IS
SIGNAL a,b,c: std_logic := '0';

BEGIN
P3: PROCESS
BEGIN
c <= not c;
WAIT FOR 0 ns;
c <= not c;
a <= c; WAIT FOR 10 ns;
c <= not c;
b <= c;
WAIT FOR 0 ns;
b <= TRANSPORT '1' AFTER 5 ns;
b <= TRANSPORT '0'; AFTER 7 ns;

END PROCESS P3;
END ARCHITECTURE behave;

Figure 1.3

ENTITY adder4 IS
PORT(p,q: IN std_logic_vector(3 DOWNTO 0);

cin: IN std_logic;
r: OUT std_logic_vector(3 DOWNTO 0);
cout: IN std_logic;
);

END ENTITY adder4;

Figure 1.4

 5

2. This question concerns the implementation and use of the ROM-based VHDL function generator entity
funcgen shown in Figure 2.1. Operation of this entity is as follows. The entity has positive edge
triggered clock clk. The 15 bit unsigned input x is read when start is '1' (for a single clk cycle). After
some number of clk cycles the unsigned 15 bit output y will be equal to the required ouput f(x), during a
single clk cycle in which output done is '1'. The number of cycles between start high, and the
corresponding done high is not specified, but may be assumed to be fixed. Synchronous signal reset
initialises the entity on power-up and is held '0' at all other times.

 The ROM table func_table defining function f has type table_type defined as follows:
TYPE table_type IS

ARRAY (0 TO 512) OF std_logic_vector(14 DOWNTO 0);

 This table is used to define values of the function f as follows:

 f(n*128) = func_table(n) (0 ≤ n ≤ 512).

 Intermediate values of the function f are computed by linear interpolation between f(n*128) and
f((n + 1)*128), so that splitting x into high and low order bits, x = xhigh*128 + xlow (0 ≤ xlow <128):

 f(x) = (f(xhigh)*(128 - xlow) + f(xhigh +1)*xlow + 64)/128.

 (Note:- f(x) is rounded down to the nearest integer)

a) A slow but space-efficient implementation of funcgen is proposed in which a single constant lookup
table is used in successive clock cycles to compute f1 = f(xhigh) and f2 = f(xhigh+1) and the result y is
computed in constant time from 128 - xlow successive additions of f1 and xlow successive additions of
f2 to a single accumulator register, set initially to 64. After these additions the result may be obtained
from the appropriate higher-order accumulator bits. Write down the necessary FSM and RTL hardware
blocks to implement this operation, indicating the (possibly state-dependent) operation of each block.

[10 marks]

b) Write a VHDL architecture to implement funcgen, assuming that func_table and table_type are defined
in a package funcgen_pkg which you are given.

[10 marks]

c) Rewrite entity funcgen as funcgen_new, in which the ROM array is an optional generic parameter, with
default value func_table.

[2 marks]

d) The entity mult_funcgen in Figure 2.2 has two 15 bit unsigned inputs x1, x2 and 16 bit unsigned
outputs y1, y2. In mult_funcgen is proposed to use two instances of funcgen_new to implement two
different functions fa and fb from corresponding tables func_table_a and func_table_b both contained in
funcgen_pkg. Write a synthesizable VHDL architecture for the entity mult_funcgen in which the timing
of start and done is similar to that of funcgen, with x1 and x2 replacing x, and y1 and y2 replacing y. The
outputs y1 and y2 are defined as follows:

y1 = fa(x1) + fb(x2)

y2 = fa(x1) - fb(x2) + 214

You may assume that integer array valued generic parameters are fully supported by the VHDL
compiler and synthesis system.

[8 marks]

 6

ENTITY funcgen IS
PORT(
reset, clk, start: IN std_logic;
done: OUT std_logic;
x: IN std_logic_vector(14 DOWNTO 0);
y: OUT std_logic_vector(14 DOWNTO 0)
);
END ENTITY funcgen;

Figure 2.1

ENTITY mult_funcgen IS
PORT(

reset, clk, start: IN std_logic;
done: OUT std_logic;
x1,x2: IN std_logic_vector(14 DOWNTO 0);
y1,y2: OUT std_logic_vector(15 DOWNTO 0)

);
END ENTITY mult_funcgen;

Figure 2.2

 7

3.

a) Figure 3.1 shows one gate-level implementation of a circuit with 5 inputs and 3 outputs. Using
transduction one of these gates can be eliminated, without altering the circuit's function. Draw the
reduced circuit, and describe why the transformation is possible.

[10]

b) Figure 3.2 shows a critical path from X to Z in a circuit. Each of the blocks F is defined by: B = P.Q +
P.A + Q.A. By applying controllability factoring at point Y, derive an equivalent circuit with reduced
critical path length. What is your control function C?

[10]

c) The VHDL fragment in Figure 3.3 defines y as a Boolean function of x(i), where x has type
std_logic_vector(2 downto 0). Write a truth table for y, and compute two ROBDDs for y
using variable orders: x(0),x(1),x(2), and x(2),x(1),x(0) respectively.

[10]

&
≥1

&

≥1

a
b
c

e

d

Figure 3.1

P1 Q1

P Q
A B

P2 Q2

P Q
A B

P3 Q3

P Q
A B

P4 Q4

P Q
A B

P5 Q5

P Q
A B

P6 Q6

P Q
A B

ZX
Y

F F F F F F

Figure 3.2

PROCESS(x)
BEGIN
IF SIGNED(x) > 2 THEN

y <= '1';
ELSE

y <= '0';
END IF;

END PROCESS;

Figure 3.3

 8

4. Figure 4.1 gives VHDL source for an entity test_mem_driver with a behavioural architecture, and
a package comms containing procedure read_cycle. The test_mem_driver entity has a positive
edge active clock clk, interfaces to a RAM through address and read data busses, and has control
signals start and test, as illustrated in Figure 4.2. In operation start is pulsed to 1 for 1 clock
cycle, initiating a test of the memory driving code. Two tests are possible, test 1 or test 2, according to
the numeric value of test during the clock cycle in which start is '1'. After some time all activity will
finish. In order to initiate another test the simulation must be restarted.

a) Initially mem_request_cycle is false. Start is pulsed high for one clk cycle, with test = 1.
Draw the waveforms of all signals and shared variables used in test_mem_driver, until the final
(indefinite) wait statement in process p1 is executed. You must indicate precise timing of all signal and
shared variable transitions, including simulation deltas where relevant.

[10]

b) It is intended that a call to read_cycle will initiate a 1 cycle long read of the RAM, at the address
specified by the value of addr. During what time window after a clock edge must read_cycle be
called for this behaviour to result?

[10]

c) You may assume that in a VHDL simulation only one process may be executing at a given time, and
that a process will always continue executing until it is suspended by a wait statement or wait on
sensitivity list. Multiple processes scheduled to start on the same delta are therefore sequenced (in an
arbitrary order). Draw a diagram indicating the timing of call and return of each of the three
read_cycle procedure calls executed during test 2. If more than one result is possible indicate all
possibilities.

[10]

 9

ENTITY test_mem_driver IS
PORT (real_mem_address : OUT INTEGER;

real_mem_data : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
start, : IN STD_LOGIC;
test : IN INTEGER
);

END test_mem_driver;

ARCHITECTURE behav OF test_mem_driver IS
SIGNAL clk : STD_LOGIC;
SIGNAL mem_ack : BOOLEAN;

BEGIN

clkgen : PROCESS
BEGIN

clk <= '0';
WAIT FOR 50 ns;
clk <= '1';
WAIT FOR 50 ns;

END PROCESS clkgen;

mem_driver_proc : PROCESS
BEGIN

FOR i IN 1 TO 10 LOOP
WAIT FOR 0 ns;

END LOOP;
IF mem_request_cycle THEN

real_mem_address <= mem_address;
WAIT UNTIL clk'EVENT AND clk = '1';
mem_data := real_mem_data;
mem_ack <= true;
mem_request_cycle := false;
WAIT FOR 0 ns;
mem_ack <= false;

ELSE
real_mem_address <= 0;
WAIT UNTIL clk'EVENT AND clk = '1';
WAIT FOR 0 ns;
mem_data := (OTHERS => 'X');

END IF;
END PROCESS mem_driver_proc;

p1 : PROCESS
VARIABLE a, b : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
WAIT UNTIL clk'EVENT AND clk = '1' AND start = '1';
WAIT FOR 0 ns;
WAIT FOR 0 ns;
read_cycle(1, a, mem_ack, clk);
read_cycle(2, b, mem_ack, clk);
WAIT;

END PROCESS p1;

p2 : PROCESS
VARIABLE c : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
WAIT UNTIL clk'EVENT AND clk = '1' AND start = '1' AND test = 2;
WAIT FOR 0 ns;
WAIT FOR 0 ns;
read_cycle(100, c, mem_ack, clk);
WAIT;

END PROCESS p2;
END behav;

Figure 4.1 (continued on next page)

 10

PACKAGE comms IS

SHARED VARIABLE mem_request_cycle : BOOLEAN := false;
SHARED VARIABLE mem_address : INTEGER;
SHARED VARIABLE mem_data : STD_LOGIC_VECTOR(7 DOWNTO 0);

PROCEDURE read_cycle(
addr : IN INTEGER;
VARIABLE data : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL ack : IN BOOLEAN;
SIGNAL clk : IN STD_LOGIC);

END PACKAGE comms;

PACKAGE BODY comms IS

PROCEDURE read_cycle(
addr : IN INTEGER;
VARIABLE data : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL ack : IN BOOLEAN;
SIGNAL clk : IN STD_LOGIC) IS

BEGIN
WAIT FOR 0 ns;
WAIT FOR 0 ns;
WHILE mem_request_cycle = true LOOP

WAIT UNTIL clk'EVENT AND clk = '1';
WAIT FOR 0 ns;
WAIT FOR 0 ns;

END LOOP;
mem_request_cycle := true;
mem_address := addr;
WAIT UNTIL ack;
data := mem_data;

END read_cycle;

END PACKAGE BODY comms;

Figure 4.1 (continued from previous page)

real_mem_address

real_mem_data

mem_driver_proc
mem_addressstart

test mem_ack

mem_request_cycle

mem_data

test_mem_driver

Figure 4.2

