Answers to Specimen Paper (new format) 2003

Question 1

a) Write a VHDL entity and architecture that implements a multi-input OR gate with an arbitrary length
std_logic_vector x as input and output y.

[5 marks]

ENTITY orgate IS

PORT(
x: std_l ogi c_vector;
y: std_logic
);

END or gat e;

ARCHI TECTURE rtl OF orgate IS
VAR ABLE v := '0";
BEG N
OR PROCESS(x)
BEG N
FOR j I N x' RANGE LOOP
v :=v or x(j);
END LOOP;
END PROCESS OR;
y <= Vv,
END ARCHI TECTURE rtl ;

b) Describe clearly ways of writing a synthesisable clocked process with and without a sensitivity list, and
give an example of a process that could implement a 7 bit negative edge triggered counter with
asynchronous clear and synchronous set.

Either use sensitivity list containing all process inputs and inside process:

IF (clock edge condition) THEN <body> END IF;

OR no sensitivity list and first statements of process is:
WAIT UNTIL (clock edge condition)
-- q,d defined as 7 bit std_logic vector

PROCESS(cl k, d, clear, set)
BEA N
IF clear="1" THEN
g <= (OTHERS=>'0");
ELSI F cl k' EVENT AND cl k="0'" THEN
IF set="1" THEN
g <= (OTHERS=>'1");

ELSE
q <= d
END | F;
END | F;
END PROCESS;

[5 marks]
11

¢) Describe precisely the hardware synthesized from each and, or, xor, =, +, - operator in the process
shown in Figure 1.1.

[5 marks]
See code for hardware
ENTITY cl ocked 1S
CGENERI C(n: |INTEGER := 4);
PORT (a,b: INstd |ogic vector(7 DOANTO 0);
X,y: QUT std_|ogic_vector(7 DOMNTO 0);
z: QUT std_logic);

END ENTI TY cl ocked,;
ARCHI TECTURE rtl OF clocked IS
BEG N
P2: PROCESS(a, z)

VARI ABLE j: | NTECGER;
BEG N

X <= signed(a) (- 1 + (n MO 3)); --nohardware synthesized from this
(all static)

y <= b xor conv_signed(255, 8); --8invertors

FORi INO TO n LOOP

j =1 - 1; --nohardware (static-)
z(i) <= a(i) and (b(i) or c(j)); -n+landsandn+lors
END LOOP;

END PROCESS P2,
END ARCHI TECTURE rtl;

d) Write a synthesizable architecture for entity compare in Figure 1.2 such that, if a,b are interpreted as
signed integers and C,d as unsigned integers:

Xx=a>b

y=a<c

z = (a=b) and (c=d)

w =4 LSB ofcif a> 0, otherwise 4 MSB of d.

12

ARCHI TECTURE rtl OF conpare IS
BEG N
P1 PROCESS(a, b, c, d)
BEG N
X <='0",; y<='0,; z<="'0";
| F signed(a)>signed(b) THEN

x<="1";

END | F;

| F signed(a)<unsigned(c) THEN
y <='1°;

END | F;

IF (a=b) AND (c=d) THEN
z <='1';

END | F;

w <= d(7 DOMNTO 4);

| F signed(a) > conv_signed(0,8) THEN
w <= c(3 DOMNTO 0);

END | F;

END PROCESS P1;

END ARCHI TECTURE rtl;
[5 marks]

e) The architecture in Figure 1.3 is part of a testbench and generates signals a,b,c,d. Draw a dimensioned
timing diagram showing the waveforms and simulation times of events on signals a,b,c,d for the first
20ns of the simulation.

0+D, 0+2D 10+D, 10+2D, 10+3D 20+D, 20+2D, 20+3D

L :

0+2D 10+3D 20+3D

15 17

[5 marks]

f) Write a VHDL entity and architecture add which implements a 4*n bit adder with inputs p,q each 4*n
bits long and output r 4*n+1 bits long, using n instances of the 4 bit full adder entity shown in Figure
1.4, which adds p and g with cin to generate sum r and carry out cout.

ENTITY add IS

GENERI C(n: | NTECER);

PORT (p,q: std_logic_vector(4*n-1 DOANTO 0);
r: std_logic_vector(4*n DOMNNTO 0)

)

Ei\lD add;

13

ARCHI TECTURE rtl OF add IS
BEG N
FORj IN O TO n-1 GENERATE
I 1: ENTITY adder4 PORT MAP(
cin=>carry(j);
cout => carry(j+1);
p=>p(4*j +3 DOMNTO 4*j);
g=>q(4*j +3 DOMNTO 4*j);
r=>r(4*j+3 DOMNTO 4*j);
END CGENERATE;

carry(0) <= '0";

r(4*n) <= carry(n);
END ARCHI TECTURE rtl ;

[5 marks]

g) Explain, with reference to the entity compare in Figure 1.2, the terms exhaustive testing and corner case
in test methodology.

Exhaustive testing : try every input pattern, in this case there are: 2° * 2° * 2% * 2% tests needed.

Corner cases: "difficult" input values, in this case a=b, a=c, c=d are all possible corner cases because of
the comparisons. Also all combinations of min, max values of a,b,c,d.

[5 marks]

h) Write a (non-synthesisable) function funny that returns TRUE if there is currently an event on its
std_logic input x, and either the previous or new value of x is not '0' or '1".

[5 marks]

FUNCTI ON funny(SIGNAL x: IN std_|ogi c) RETURN BOOLEAN IS
BEG N

I F NOT x' EVENT RETURN FALSE, END | F,;

CASE x IS

VWHEN ' 0" | "1' => NULL;
WHEN OTHERS => RETURN TRUE;
END CASE;

CASE x' LAST_VALUE | S

VWHEN ' 0" | "1' => NULL;
VHEN OTHERS => RETURN TRUE;
END CASE;

RETURN FALSE;

END FUNCTI ON f unny;

14

Question 2

Parts a), b) of this question test whether the student can write RTL synthesizable VHDL descriptions of
hardware described at an algorithmic level. Parts ¢) and d) test whether the student understands how to
write structural descriptions.

a)

FSM

reset

='1") count=127
iblehigh —» ac e

xhold
Rty
ROM
X f(x+128)

ROM (comb) : 1 : = if sel='0" then f(xhigh) else f(xholdhigh+1)
XHOLD (clocked) : if start="1" then xhold :=x
ACC: if init then acc := 0 else if sum then

acc := (if xholdlow >= count then f(xhold) else f(xholdhigh+1);
COUNT: if add then count := count+1 else count := 0;

b)

ARCHI TECTURE rtl OF funcgen IS
TYPE state IS (init, readtabl ehigh, sum donestate);
SI GNAL sel : std_logic;
SI GNAL ss: state;
SI GNAL xh: std_|ogic_vector(8 DOANTO 0);
SIGNAL xI, count: std |ogic_vector(6 DOMNTO 0);
SI GNAL ronmout: std_| ogic_vector (14 DOANTO 0);
SI GNAL acc: std_logic_vector(21 DOANTO 0);
BEG N
XHOLD: PROCESS
BEG N
VWAI T UNTIL cl k' EVENT AND cl k="1";
IF start="1" THEN
xh <= '0" & x(14 downto 7);
xI <= x(6 DOWNTO 0);
END | F;
END PROCESS XHOLD;

ROM PROCESS(xh, x|, count)
VARI ABLE romin: std_|logic vector(9 DOANTO 0);
VARI ABLE sel : BOOLEAN,;
BEG N
sel := count > xl;
I F sel THEN
romn := unsigned('0" & xh)+1;
ELSE
romn :="'0" & xh;
END | F;

ronout <= func_tabl e(conv_i nteger(unsigned(romn)));
END PROCESS ROM

ACC_COUNT: PROCESS
BEG N
WAI'T UNTIL cl k' EVENT AND cl k="1";
IF ss = sum THEN
acc <= unsigned(acc) + unsigned(ronout);
count <= unsi gned(count) +1;

ELSE
count <= (OTHERS=>'0');
END | F;
END PROCESS ACC_COUNT;
FSM PROCESS
BEG N
VWAI'T UNTIL cl k' EVENT AND cl k="1";
CASE ss IS

WHEN init => I F start="1" THEN ss <= readtabl ehigh; END I F;

WHEN r eadt abl ehi gh => ss <= sum

WHEN sum => | F unsi gned(count) = conv_unsigned(127,7) THEN
ss <= donest at e;

END | F;
VWHEN donestate => ss <= init;
END CASE;
IF reset ="'1'" THEN ss <= init; END | F;

END PROCESS FSM
y <= acc(21 DOMWNTO 7);

END ARCHI TECTURE rtl;

16

¢)

ENTI TY funcgen_new | S
GENERI C(table: table_type := func_table);

PORT(
reset, clk, start: IN std_ | ogic;
done: QUT std | ogic;
x: IN std | ogic _vector(14 DOMNTO 0);
y: OQUT std | ogic vector(14 DOANTO 0)
).

Ei\lD ENTI TY funcgen_new;
d)
ARCHI TECTURE rtl OF mult_funcgen IS
SI GNAL ya, yb: std_| ogi c_vector (14 DOANNTO 0);
SIGNAL dummy: std_logic; -- dummy signal;
BEG N

TA: ENTITY funcgen_new GENERI C MAP(func_tabl e_a)
PORT MAP(reset,clk,start, done, x1, ya);

TB: ENTITY funcgen_new GENERI C MAP(func_t abl e_b)
PORT MAP(reset,clk,start, dummy, x2, yb);

y1l <= unsi gned(ya) +unsi gned(yb);
y2 <= ('0" & unsigned(ya))-(('0" & unsigned(yb))+2**14);

END ARCHI TECTURE rtl;

17

Question 3

a) Figure 3.1 shows one gate-level implementation of a circuit with 4 inputs and 3 outputs. Using
transduction one of these gates can be eliminated, without altering the circuit's function. Draw the
reduced circuit, and describe why the transformation is possible.

[4]

[oai]
N

When c is 0, the gate X is equivalent to the original 3 input NAND gate. When c is 1, y is 1, hence z is don't
care.

b) Figure 3.2 shows a critical path from X to Z in a circuit. Each of the blocks F is defined by: B =P.Q +
P.A + Q.A. By applying controllability factoring at point Y, derive an equivalent circuit with reduced
critical path length. What is your control function C?

[8]
C= (P4 xor Q4).(P5 xor Q5).(P6 xor Q6).
Pl Ql P2 Q2 P3 Q3
S I R I —
o] [* o] [o]l
A F B A F B A F B 1
Z
P4 Q4 P5 Q5 P6 Q6
| | | | | |
P P P
o " BHa E A" F % 0
P4 =1 |
Q4 &
P5 =1 ||
Qs
P6 =1 ||
Q6

18

c) The VHDL fragment in Figure 3.3 defines y as a boolean function of x, where x has type
std_l ogi c_vector(2 downto 0).Write a truth table for y, and compute two ROBDDs for y
using variable orders: x(0), x(1), x(2),andx(2), x(1), x(0) respectively.

X2 | X1 | X0 Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Order: x(2),x(1),x(0)

©

o
-

:
p

®

[8]

Order x(0), x(1), x(2)

Question 4.

d) Draw the waveforms of all signals and shared variables used in test mem_driver, until the final
(indefinite) wait statement in process pl is executed. You must indicate precise timing of all signal and
shared variable transitions, including delta delays where relevant.

[10]
D = number of deltas from clock edge. All times are referenced from clock rising edge, at 50, 150, 250.

NB clock edge is actually at delta 1 in this architecture, so add 1 for true deltas. mem_data changes on
falling edge of mem_request cycle. mem_addr changes 1 delta after rising edge of mem_request cycle.

D4 DO D3 DO

mem_request_cycle

D1 D2

mem_ack

D12 D12 D11

real mem_address

e) During what time window after a clock edge will read_cycle have this behaviour?
[5]

mem r equest _cycl e is tested 11delta after the clock edge by mem driver proc. For it to be
certainly read as set, it must be set 10delta after clock => read cycle executed 8delta after clock edge.
mem_request cycle is tested by read cycle 2delta after the call, and reset by mem driver proc on the
clock edge. So window is clock edge to clock edge + 8delta.

f) Draw a diagram indicating the order of call and return of each of the three r ead_cycl e procedure
calls executed during test 2. If more than one result is possible indicate all possibilities.

[5]

Depending which of the 1* read cycles in pl or p2 is executed 1%, 1,100,2 or 100,1,2. The waiting
read_cycle will test mem_request_cycle before the newly called one, hence these are only two orders
possible. Both the 1* p1 & p2 read cycles will be called at the same time, the one that executes first will
return after 1 cycle, the other after 2. The 2™ p1 read cycle will be called immediately after the 1% cycle
end and therefore take 1 or 2 cycles, terminating at the end of the 3" cycle from the start.

20

21

