
 11

Answers to Specimen Paper (new format) 2003

Question 1
a) Write a VHDL entity and architecture that implements a multi-input OR gate with an arbitrary length

std_logic_vector x as input and output y.

[5 marks]

ENTITY orgate IS
PORT(

x: std_logic_vector;
y: std_logic
);

END orgate;

ARCHITECTURE rtl OF orgate IS
VARIABLE v := '0';

BEGIN
OR: PROCESS(x)
BEGIN

FOR j IN x'RANGE LOOP
v := v or x(j);

END LOOP;
END PROCESS OR;
y <= v;

END ARCHITECTURE rtl;

b) Describe clearly ways of writing a synthesisable clocked process with and without a sensitivity list, and
give an example of a process that could implement a 7 bit negative edge triggered counter with
asynchronous clear and synchronous set.

 Either use sensitivity list containing all process inputs and inside process:

 IF (clock edge condition) THEN <body> END IF;

 OR no sensitivity list and first statements of process is:

 WAIT UNTIL (clock edge condition)

 -- q,d defined as 7 bit std_logic_vector
PROCESS(clk, d, clear, set)
BEGIN

IF clear='1' THEN
q <= (OTHERS=>'0');

ELSIF clk'EVENT AND clk='0' THEN
IF set='1' THEN

q <= (OTHERS=>'1');
ELSE

q <= d;
END IF;

END IF;
END PROCESS;

 [5 marks]

 12

c) Describe precisely the hardware synthesized from each and, or, xor, =, +, - operator in the process
shown in Figure 1.1.

[5 marks]

See code for hardware
ENTITY clocked IS
GENERIC(n: INTEGER := 4);
PORT (a,b: IN std_logic_vector(7 DOWNTO 0);

x,y: OUT std_logic_vector(7 DOWNTO 0);
z: OUT std_logic);

END ENTITY clocked;

ARCHITECTURE rtl OF clocked IS
BEGIN
P2: PROCESS(a,z)
VARIABLE j: INTEGER;

BEGIN
x <= signed(a) (- 1 + (n MOD 3)); -- no hardware synthesized from this

(all static)
y <= b xor conv_signed(255,8); -- 8 invertors
FOR i IN 0 TO n LOOP

j := i - 1; -- no hardware (static -)
z(i) <= a(i) and (b(i) or c(j)); --n+1 ands and n+1 ors

END LOOP;
END PROCESS P2;
END ARCHITECTURE rtl;

d) Write a synthesizable architecture for entity compare in Figure 1.2 such that, if a,b are interpreted as
signed integers and c,d as unsigned integers:

x = a > b

y = a < c

z = (a=b) and (c=d)

w = 4 LSB of c if a > 0, otherwise 4 MSB of d.

 13

ARCHITECTURE rtl OF compare IS
BEGIN

P1 PROCESS(a,b,c,d)
BEGIN
x <= '0'; y <= '0'; z <= '0';
IF signed(a)>signed(b) THEN

x<='1';
END IF;
IF signed(a)<unsigned(c) THEN

y <='1';
END IF;
IF (a=b) AND (c=d) THEN

z <='1';
END IF;
w <= d(7 DOWNTO 4);
IF signed(a) > conv_signed(0,8) THEN

w <= c(3 DOWNTO 0);
END IF;
END PROCESS P1;

END ARCHITECTURE rtl;

[5 marks]

e) The architecture in Figure 1.3 is part of a testbench and generates signals a,b,c,d. Draw a dimensioned
timing diagram showing the waveforms and simulation times of events on signals a,b,c,d for the first
20ns of the simulation.

0+2D 20+3D 10+3D

0+D, 0+2D 10+D, 10+2D, 10+3D

c

a

b

15 17

20+D, 20+2D, 20+3D

[5 marks]

f) Write a VHDL entity and architecture add which implements a 4*n bit adder with inputs p,q each 4*n
bits long and output r 4*n+1 bits long, using n instances of the 4 bit full adder entity shown in Figure
1.4, which adds p and q with cin to generate sum r and carry out cout.

ENTITY add IS
GENERIC(n: INTEGER);
PORT (p,q: std_logic_vector(4*n-1 DOWNTO 0);

r: std_logic_vector(4*n DOWNTO 0)
);
END add;

 14

ARCHITECTURE rtl OF add IS
BEGIN

FOR j IN 0 TO n-1 GENERATE
I1: ENTITY adder4 PORT MAP(

cin=>carry(j);
cout => carry(j+1);
p=>p(4*j+3 DOWNTO 4*j);
q=>q(4*j+3 DOWNTO 4*j);
r=>r(4*j+3 DOWNTO 4*j);

END GENERATE;

carry(0) <= '0';
r(4*n) <= carry(n);

END ARCHITECTURE rtl;

[5 marks]

g) Explain, with reference to the entity compare in Figure 1.2, the terms exhaustive testing and corner case
in test methodology.

 Exhaustive testing : try every input pattern, in this case there are: 28 * 28 * 28 * 28 tests needed.

 Corner cases: "difficult" input values, in this case a=b, a=c, c=d are all possible corner cases because of
the comparisons. Also all combinations of min, max values of a,b,c,d.

[5 marks]

h) Write a (non-synthesisable) function funny that returns TRUE if there is currently an event on its
std_logic input x, and either the previous or new value of x is not '0' or '1'.

[5 marks]

FUNCTION funny(SIGNAL x: IN std_logic) RETURN BOOLEAN IS
BEGIN

IF NOT x'EVENT RETURN FALSE; END IF;

CASE x IS
WHEN '0' | '1' => NULL;
WHEN OTHERS => RETURN TRUE;
END CASE;

CASE x'LAST_VALUE IS
WHEN '0' | '1' => NULL;
WHEN OTHERS => RETURN TRUE;
END CASE;

RETURN FALSE;

END FUNCTION funny;

 15

Question 2
Parts a), b) of this question test whether the student can write RTL synthesizable VHDL descriptions of
hardware described at an algorithmic level. Parts c) and d) test whether the student understands how to
write structural descriptions.

a)

FSM

ROM (comb) : r : = if sel='0' then f(xhigh) else f(xholdhigh+1)

XHOLD (clocked) : if start='1' then xhold := x

ACC: if init then acc := 0 else if sum then

 acc := (if xholdlow >= count then f(xhold) else f(xholdhigh+1);

COUNT: if add then count := count+1 else count := 0;

init readtablehigh add done
start='1' count=127

reset

xhigh

xlow

f(x)

f(x+128)

ROM
+1

 acc

count

>

x

y

xhold

 16

b)
ARCHITECTURE rtl OF funcgen IS

TYPE state IS (init, readtablehigh, sum, donestate);
SIGNAL sel: std_logic;
SIGNAL ss: state;
SIGNAL xh: std_logic_vector(8 DOWNTO 0);
SIGNAL xl, count: std_logic_vector(6 DOWNTO 0);
SIGNAL romout: std_logic_vector(14 DOWNTO 0);
SIGNAL acc: std_logic_vector(21 DOWNTO 0);

BEGIN
XHOLD: PROCESS
BEGIN

WAIT UNTIL clk'EVENT AND clk='1';
IF start='1' THEN

xh <= '0' & x(14 downto 7);
xl <= x(6 DOWNTO 0);

END IF;
END PROCESS XHOLD;

ROM: PROCESS(xh, xl, count)
VARIABLE romin: std_logic_vector(9 DOWNTO 0);
VARIABLE sel: BOOLEAN;

BEGIN
sel := count > xl;
IF sel THEN

romin := unsigned('0' & xh)+1;
ELSE

romin := '0' & xh;
END IF;

romout <= func_table(conv_integer(unsigned(romin)));

END PROCESS ROM;

ACC_COUNT: PROCESS
BEGIN

WAIT UNTIL clk'EVENT AND clk='1';
IF ss = sum THEN

acc <= unsigned(acc) + unsigned(romout);
count <= unsigned(count)+1;

ELSE
count <= (OTHERS=>'0');

END IF;
END PROCESS ACC_COUNT;

FSM: PROCESS
BEGIN
WAIT UNTIL clk'EVENT AND clk='1';
CASE ss IS

WHEN init => IF start='1' THEN ss <= readtablehigh; END IF;
WHEN readtablehigh => ss <= sum;
WHEN sum => IF unsigned(count) = conv_unsigned(127,7) THEN

ss <= donestate;
END IF;

WHEN donestate => ss <= init;
END CASE;
IF reset = '1' THEN ss <= init; END IF;

END PROCESS FSM;

y <= acc(21 DOWNTO 7);

END ARCHITECTURE rtl;

 17

c)

ENTITY funcgen_new IS
GENERIC(table: table_type := func_table);
PORT(

reset, clk, start: IN std_logic;
done: OUT std_logic;
x: IN std_logic_vector(14 DOWNTO 0);
y: OUT std_logic_vector(14 DOWNTO 0)

);
END ENTITY funcgen_new;

d)

ARCHITECTURE rtl OF mult_funcgen IS
SIGNAL ya,yb: std_logic_vector(14 DOWNTO 0);
SIGNAL dummy: std_logic; -- dummy signal;

BEGIN

TA: ENTITY funcgen_new GENERIC MAP(func_table_a)
PORT MAP(reset,clk,start, done, x1, ya);

TB: ENTITY funcgen_new GENERIC MAP(func_table_b)
PORT MAP(reset,clk,start, dummy, x2, yb);

y1 <= unsigned(ya)+unsigned(yb);

y2 <= ('0' & unsigned(ya))-(('0' & unsigned(yb))+2**14);

END ARCHITECTURE rtl;

 18

Question 3

a) Figure 3.1 shows one gate-level implementation of a circuit with 4 inputs and 3 outputs. Using
transduction one of these gates can be eliminated, without altering the circuit's function. Draw the
reduced circuit, and describe why the transformation is possible.

[4]

≥1

&

≥1

a
b
c

e

d

X

y

z

When c is 0, the gate X is equivalent to the original 3 input NAND gate. When c is 1, y is 1, hence z is don't
care.

b) Figure 3.2 shows a critical path from X to Z in a circuit. Each of the blocks F is defined by: B = P.Q +
P.A + Q.A. By applying controllability factoring at point Y, derive an equivalent circuit with reduced
critical path length. What is your control function C?

[8]

C= (P4 xor Q4).(P5 xor Q5).(P6 xor Q6).
P1 Q1

P Q
A B

P2 Q2

P Q
A B

P3 Q3

P Q
A B

P4 Q4

P Q
A B

P5 Q5

P Q
A B

P6 Q6

P Q
A B

Z

X
Y

F F F

F F F

MUX
1

0

=1P4
Q4

=1P5
Q5

=1P6
Q6

&

0

 19

c) The VHDL fragment in Figure 3.3 defines y as a boolean function of x, where x has type
std_logic_vector(2 downto 0). Write a truth table for y, and compute two ROBDDs for y
using variable orders: x(0),x(1),x(2), and x(2),x(1),x(0) respectively.

[8]

X2 X1 X0 Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Order: x(2),x(1),x(0) Order x(0), x(1), x(2)

x2

x1

x0

0 1

x0

x1 x1

x2

0 1

0 1

0

0

0

1

1

1

10

0

1

1
0

 20

Question 4.
d) Draw the waveforms of all signals and shared variables used in test_mem_driver, until the final

(indefinite) wait statement in process p1 is executed. You must indicate precise timing of all signal and
shared variable transitions, including delta delays where relevant.

[10]

D = number of deltas from clock edge. All times are referenced from clock rising edge, at 50, 150, 250.
NB clock edge is actually at delta 1 in this architecture, so add 1 for true deltas. mem_data changes on
falling edge of mem_request cycle. mem_addr changes 1 delta after rising edge of mem_request_cycle.

mem_request_cycle

D4 D0

mem_ack

D1 D2

D3 D0

real_mem_address
1 2 0

D12 D12 D11

e) During what time window after a clock edge will read_cycle have this behaviour?

[5]

mem_request_cycle is tested 11delta after the clock edge by mem_driver proc. For it to be
certainly read as set, it must be set 10delta after clock => read_cycle executed 8delta after clock edge.
mem_request cycle is tested by read_cycle 2delta after the call, and reset by mem_driver_proc on the
clock edge. So window is clock edge to clock edge + 8delta.

f) Draw a diagram indicating the order of call and return of each of the three read_cycle procedure
calls executed during test 2. If more than one result is possible indicate all possibilities.

[5]

Depending which of the 1st read_cycles in p1 or p2 is executed 1st, 1,100,2 or 100,1,2. The waiting
read_cycle will test mem_request_cycle before the newly called one, hence these are only two orders
possible. Both the 1st p1 & p2 read_cycles will be called at the same time, the one that executes first will
return after 1 cycle, the other after 2. The 2nd p1 read cycle will be called immediately after the 1st cycle
end and therefore take 1 or 2 cycles, terminating at the end of the 3rd cycle from the start.

 21

