E3.06

IMPERIAL COLLEGE LONDON AC5
ISE3.5

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2003

MSc and EEE/ISE PART III/IV: M.Eng., B.Eng. and ACGI

VHDL AND LOGIC SYNTHESIS

Tuesday, 6 May 10:00 am

Time allowed: 3:00 hours

There are FOUR questions on this paper.

Question 1 is COMPULSORY
Answer question 1 and any TWO of questions 2-4
Question 1 carries 40% of the marks, questions 2-4 carry equal marks

Corrected Copy

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsibie First Marker(s) : T.J.W. Clarke
Second Marker(s) : P.Y.K. Cheung

© University of London 2003

Special Information for Invigilators: none.

Information for Candidates

VHDL language reference and course notes can be found in the booklet VHDL Exam Notes.
Unless otherwise specified assume VHDL 1993 compiler.

10of8

(a)

(b)

(c)

(d)

(e)

(H

(g)

The Questions

Write down a VHDL architecture for the entity variable_count shown in Figure 1.1, which implements
a divide by 10 counter when se/ is '0, and a divide by 11 counter when sel is '1'. The counter should be
negative edge triggered from clock clk, with synchronous reset rst.

(6]

Describe how the input and outpur signals of a combinational VHDL process may be derived from
inspection of the process source code. State the conditions that must be satisfied by a VHDL process if
it is to synthesise correctly to combinational logic.

(51

Write a synthesizable architecture for entity adder in Figure 1.2 such that if a, b, ¢, d, x are interpreted

as signed numbers, the output x is equal to a+b+c+d, and pos = '1" if and only if x is strictly greater than
0.

[6]

The architecture in Figure 1.3 is part of a testbench and generates signals a,b,c,d. Draw a dimensioned
timing diagram showing the waveforms and physical times of events on signals a,b,c¢,d for the first 65ns
of the simulation.

(6]

Under what circumstances is the simulation deita of an event non-zero? Explain, giving a synthesisable
VHDL example, how delta delays in simulation can mean that a synthesizable hardware description
simulates incorrectly.

(6]

Consider the testing of entity adder defined in part (c) of this question. Explain, with reference to this,
the term exhaustive testing. Give reasons why exhaustive testing of this entity is impracticable and
suggest a better test strategy.

(5]

Write a synthesizable VHDL architecture for the entity in Figure 1.5 that implements the FSM in
Figure 1.4 when reset is '0', and synchronously resets to state s/ when reset is 'l".

(6]

20f8

ENTITY variable count IS
PORT (
clk, sel, rst: IN std logic;
count: INOUT std_logic_vector{ 3 DOWNTO 0)
)i
END ENTITY variable count;

Figure 1.1

ENTITY adder IS

PORT (a,b,c,d: IN std_logic vector (7 DOWNTO O0) ;
x: OUT std_logic_vector (9 DOWNTO 0) ;
pos: OUT std logic
)
END adder;

Figure 1.2

ARCHITECTURE behave OF testbench IS
SIGNAL a,b,c,d: std logic := '0';
BEGIN
P3: PROCESS
BEGIN
a <= '1'; WAIT FOR 10 ns;
b <= not b; ¢ <= b; WAIT FOR 10 ns;
d <= '1'; WAIT FOR 10 ns;
d <= '0'; a <= '0"';
END PROCESS P3;
END ARCHITECTURE behave;

Figure 1.3

ENTITY fsm IS
PORT(clk, x, reset: IN
std _logic;
a,b: OUT std_logic

) i
END fsm;

Input: x
Outputs: a,b

Figure 1.4 Figure 1.5

3of 8

(2)

(b)

(c)

The clocked computational element sort_element shown in Figure 2.1 has clock clk, and data inputs
in_h, in_L It has three modes of operation on the clock edge, summarised in Figure 2.2. When input
mode = "00" the values in internal data registers data_h and data_[are swapped jf and only if data 1>
data_h. When mode = "01" and data_h > in_h, data_h is loaded with in_h. Similarly, when
mode="01" and in | > data_l, data_l is loaded with in_[. Finally when mode="10" data_ is set to
data_h, and data_h is set to in_h. Under all other conditions data_I and data_h are unchanged.

In modes "00" and "01", combinational output unchanged is '1' during a clock cycle at the end of which
the value in both registers will be unchanged, otherwise it is '0'. Outputs out_h and out_I contain the
current values of data_h and data [at all times.

Operation of sort_element is don't care whenever mode = "11".

The 16 bit data path contains numbers in sign and magnitude representation, in which the most
significant bit is '1" if the number is negative, and the bottom 15 bits contain the absolute value of the
number. Zero may be represented by either a 'l or a '0' sign bit.

Write the body of a synthesizable VHDL function sign_mag_greater with header as below that returns
value TRUE if its sign and magnitude parameter a is greater than its sign and magnitude parameter b.

FUNCTION sign mag greater(
a: std logic vector (15 DOWNTO O);
b: std_logic_vector(15 DOWNTO 0O)) RETURN BOOLEAN;

[6]

Using function sign_mag greater, write an entity and synthesizable VHDL architecture for block
sort_element shown in Figure 2.1 & Figure 2.2.

[12]

A hardware sort engine is designed with 64 sort_element instances as in Figure 2.3. The block sorter is
implemented using the entity sorter in Figure 2.4. In this block data is transferred to and from the 64
sort_element instances using cycles with mode = "10", during which in_h of the top sort_element is
connected to shift_in. In all other modes in_h is connected to a constant kmax = "011111111111111 1",
The bottom sort_element has in_I always connected to the constant kmin = "1111111111111111". The
combinational output a is '1' only when all of the unchanged outputs are '1'.

Write a synthesizable VHDL architecture for the entity sorter.

(12}

in h l T out h

clk
— l data h |
mode
sorter _element
unchanged r data | !

out | l T in_l

Figure 2.1

40of 8

Mode "00'" and Mode "10" Mode "01" 7~ Mode "01"
mode | data_h | data_h | data_l in_l> data_l in_h < |data_h
< data_l data_l data_h
00 No data_h | data_l No data_] No data_h
00 Yes data_ | | data_h Yes in_| Yes [in_h

10 X in_h data_h
Figure 2.2
1
Tk sorter MUX 16 o
clk < [e = shifi_in
mode - 16
mode in_h out_h I k
) . max
& unchanged out_1 in_I
1 I mode="10"
—| mode in_h out_h
unchanged out_] in_l
redeans - — mode in_h out_h
| a unchanged out_| in_l 64? ’ .
' ; " T sorter_elemen
| FSM ! o
""""" R
— mode in_h out_h
unchanged out_l in_}
L—{ mode in_h out_h
unchanged out_l in_l

shift_out
Figure 2.3
ENTITY sorter IS
PORT (clk: IN std _logic;

mode: IN std logic_vector(l DOWNTO 0);

a: OUT std logic;

shift in: IN std logic_vector(15 DOWNTO 0);
shift out: OUT std logic_vector(15 DOWNTO 0)

)i
END sorter;

Figure 2.4

50f 8

(a)

(b)

(c)

In this question ® represents Boolean operation XOR.

Calculate the OBDD for the Boolean expressions x/ @ (x2 @ (x3 @ x4)) using variable order (x/, x2, x3,
x4), and derive the corresponding ROBDD. Write down the sizes of the OBDD and ROBDD, and
determine the sizes of OBDD and ROBDD in the case of an n-variable XOR. Hence show that
ROBDDs can be much smaller than the corresponding OBDD.

[12]

Write a synthesisable VHDL architecture for the entity parity given in Figure 3.1, such that the output z
is '1" if and only if an odd number of the inputs y(i) are '1'.

[6]

Write a synthesizable fully structural VHDL architecture for the entity big_parity in Figure 3.2, using
multiple instances of parity, as shown in Figure 3.3. VHDL definitions of the constants c, k in Figure
3.3 are as follows:

CONSTANT c: INTEGER =nv/10;
CONSTANT k: INTEGER =m - ¢c*10;

[12]

6 of 8

ENTITY parity IS
GENERIC(n: NATURAL) ;
PORT (’

y: IN std_logic_vector(n-1 DOWNTO O0) ;
z: OUT std_logic

)

END ENTITY parity;

Figure 3.1

ENTITY big parity IS

GENERIC(m: NATURAL) ;

PORT (
y: IN std_logic_vector (m-1 DOWNTO 0);
z: OUT std logic

)

END ENTITY big_parity;

Figure 3.2

(10 ,
L pority f——1 parit
¢ parity 10 .
units < 7 > parity >
10 :
L »{ parity > z
m >
—7‘.—_
: » parity :
| Omitifk=0 i
big_parity
Figure 3.3

7 of 8

(a)

(b)

(c)

This question relates to the design and implementation of a testbench for the fully synchronous entity
testable defined in Figure 4.1. This entity has positive edge triggered clock c/k. The two 15 bit unsigned
inputs x/,x2 are read when start is '1' (for a single cycle). After some number of cycles of computation
the unsigned 16 bit outputs y/, y2 become valid, during a single cycle, in which output done is '1'. On
initial power up outputs are undefined for the first 1000 clock cycles. Providing that szart is held '0' for
this period, subsequent operation will be as specified. The entity calculates outputs as follows:

vl = fa(xI) + fb(x2)
y2 = fa(xI) - fb(x2) + 2"

where fa, fb are two constant functions with integer values in the range 0 to 2'°- 1.

You are given a package test_pkg containing behavioural VHDL functions fa_behave and fb_behave
with headers as in Figure 4.2 that evaluate to the correct values for functions fa and fb, and therefore
can be used to determine the desired output of testable. Write a testbench b1 for testable that will test
that the outputs y/, y2 of festable are correct for a sequence of input pairs (x/, x2) read from a file
"stimulus_file". The inputs may be read either from a VHDL record typed file or from a text file.
In the latter case you must specify the required input format.

[15]

A testbench 1b2 for testable is proposed that will check that every possible output of constituent
functions fa and fb is correct, using at most 2'° tests. Determine an appropriate set of tests and discuss
the merits of b2 when compared with both random and exhaustive testing of festable.

15]

Suppose that it is known that functions fa and fb are implemented in testable using ROM lookup tables,
where the top 9 bits of their arguments (xhigh) are used to index the table, and the bottom 7 bits (xlow)
control linear interpolation of the result:

fa(x) = (roma(xhigh)*(128 - xlow)+roma(xhigh +1)*xlow)/128
fb(x) = (romb(xhigh)*(128 - xlow)+tromb(xhigh +1)*xlow)/128

Determine the minimum number of tests necessary to test all values of the two tables roma, romb,
specifying the test set that you propose. Assume that access to roma, romb is not directly available, so
all testing must use festable. Describe an efficient test strategy for testable, including these tests,
explaining the purpose of any additional tests that you propose.

[10]

ENTITY testable IS
PORT (
clk, start: IN std_logic;
done: OUT std_logic;
X1,x2: IN std_logic vector (14 DOWNTO O0);
yl,y2: OUT std_logic vector(15 DOWNTO 0)
)i
END ENTITY testable;

Figure 4.1

FUNCTION fa_behave(x: INTEGER) RETURN INTEGER;
FUNCTION fb_behave(x: INTEGER) RETURN INTEGER;

Figure 4.2

8 of 8

