Solutions

2003

E3.06 VHDL & Logic Synthesis

Examiners: T. J. W. Clarke & P. Y. K. Cheung

Solutions: VHDL & Logic Synthesis EE3.06

Solution to Question 1 AC YT, Ts& T

This question carries 40% of total marks, and is compulsory. It examines the core material of the course
as follows:

(a) - (c) test whether the student understands the use of signals, variables and control flow in
synthesizable VHDL processes, and the ability to write simple hardware descriptions.

(e) & (f) test whether the student understands the operation of VHDL testbenches. g) tests whether the
student understands how to describes FSMs in VHDL

(a) many implementations are possible - here is one:

ARCHITECTURE rtl of variable count IS
BEGIN

P1: PROCESS

BEGIN

WAIT UNTIL clk'EVENT AND clk='0'; -- negative edge

IF (rst = '"1") OR
({(sel = '1'") AND count = conv_std logic vector(10,4)) OR
((sel = '0') AND count = conv_std logic vector(9,4))

THEN
count <= (OTHERS=>'0"');

ELSE

count <= unsigned(count)+1;
END IF;
END PROCESS P1;

END ARCHITECTURE rtl;

(b)

Input signals of a process occur on RHS of a concurrent assignment or in a conditional expression. In a
well formed combinational process all input signals are in the sensitivity list. Output signals are those
driven by the process (on LHS of concurrent assignments).

Conditions for correct synthesis:
1) all inputs are in sensitivity list

2) all outputs are driven in all execution paths through the process body.

Solutions, page 1 of 11

Solutions: VHDL & Logic Synthesis EE3.06

(c) Some care is needed to ensure that all + operations are 10 bit. In theory the addition could be broken
into 2 9 bit additions followed by 1 10 bit addition, thus saving 2 full adder stages. This is not required
for full marks.

ARCHITECTURE rtl OF adder IS
BEGIN
Pl: PROCESS(a,b,c,d)
VARIABLE x v: std logic_vector (9 DOWNTO 0);

BEGIN
pos <= '0'; -- default;
X v := signed(a(7) & (a(7) & a)) + signed(b); -- 9 bit addition
X v := (signed(x_v) + signed(c)) + signed(d);

X <= X V;
IF signed(x_v) > 0 THEN
pos <= '1"';
END IF;
END PROCESS P1;
END ARCHITECTURE rtl;

(d) Times in ns. Note no glitch on a at 30ns.

d o

0 10 20 30 40 50 60

Solutions, page 2 of 11

Solutions: VHDL & Logic Synthesis EE3.06

(e)

An event has non-zero delta if the event is generated from a signal assignment with zero physical delay
time. Delta delays can result in flip-flop input data changing before the flip-flop is clocked, where the
clock is delayed by 2 delta or more, e.g. passes through two signal assignments:

clkl <= clk;
clk?2 <= clkl;

FF1: PROCESS

BEGIN
WAIT UNTIL clk'EVENT AND clk='1l";
q <= d;

END PROCESS FF1;

FF2: PROCESS ~-- this process simulates incorrectly
BEGIN

WAIT UNTIL clk2'EVENT AND clk2='1l"';

g2 <= d2;
END PROCESS FF2;

4

Exhaustive testing would check correct output for every possible input bit pattern. In this case there are
4 8 bit inputs => 2**32 patterns. This would take a very long time to simulate. In this case a better
strategy would be random testing (an independent random number for each input) for say 10000 tests
together with explicit checking for all inputs at max or min values (16 cases in all).

Solutions, page 3 of 11

Solutions: VHDL & Logic Synthesis EE3.06

(2

ARCHITECTURE rtl OF fsm IS
TYPE state IS (sl, s2, s3):

SIGNAL ss, ss next: state;
BEGIN

Pl: PROCESS(ss,x)
BEGIN
-- default values
a<="'0'"; b<="1";
ss_next <= ss;
CASE ss IS

WHEN sl =>
a <= "'1";
IF x="'0" THEN ss next <= s2; ELSE ss next <= s3; END IF;

WHEN s2 =>
IF x='0"' THEN ss next <= s3; ELSE ss next <= sl; END IF;

WHEN s3 =>

b <= '0';
IF x="0"' THEN ss next <= s2; END IF;
END CASE;

END PROCESS P1;

P2: PROCESS

BEGIN
WAIT UNTIL clk'EVENT AND clk='1l";
IF reset = '1' THEN
ss <= s81;
ELSE
ss <= ss_next;
END IF;

END PROCESS P2;

END ARCHITECTURE rtl;

Solutions, page 4 of 11

Solutions: VHDL & Logic Synthesis EE3.06

Solution to Question 2.

This question tests the student's ability to write synthesisable VHDL code. c) tests ability to design at
RTL block level and d) tests ability to use structural VHDL.

(a)

FUNCTION sign mag_greater(
a: std logic vector (15 DOWNTO O0);
b: std_logic_vector(lS DOWNTO 0)) RETURN BOOLEAN IS
BEGIN
CASE std logic_vector'(a(l5), b(l5)) IS
WHEN "01" => RETURN TRUE;
WHEN "10" => RETURN FALSE;
WHEN "00" => RETURN unsigned{a) > unsigned(b);
WHEN "11" => RETURN unsigned(a) < unsigned(b);
WHEN OTHERS => RETURN FALSE;
END CASE;
END FUNCTION sign mag greater;

(b)
ENTITY sorter element IS
PORT(clk: IN std logic;
mode: IN std logic vector(1 DOWNTO O);
in 1, in h: IN std locgic_vector(15 DOWNTO O);
out 1, out h: OUT std logic vector(15 DOWNTO 0);

unchanged: OUT std logic);
END sorter element;

Solutions, page 5 of 11

Solutions: VHDL & Logic Synthesis EE3.06

ARCHITECTURE rtl OF sorter_element IS

SIGNAL data h, data 1, data h d, data_1l d:
std_logic_vector (15 DOWNTO O0);

SIGNAL unchanged int: std logic;

BEGIN
COMB: PROCESS(data h,data 1, in h, in_1, mode)
BEGIN
unchanged int <= '0';
data h d <= data_h;
data 1 d <= data 1;
CASE mode IS
WHEN "00" =>
IF sign mag greater(data_1, data h)

THEN
data h d <= data_1;
data 1 d <= data_h;
unchanged int <= '1";
END IF;

WHEN "10" =>
data 1 d <= data_h;
data h <= in h;
WHEN "01" =>

IF sign mag greater(data _h, in h) THEN
data h d <= in_h;
unchanged int <= '1';

END IF;

IF sign mag greater(in 1, data 1) THEN
data 1 d <= in 1;
unchanged int <

END IF;

WHEN OTHERS => data h d <= (OTHERS =>'-');
data h 1 <= (OTHERS =>'-');
unchanged int <= '-';

o~

lll’.

END CASE;
END PROCESS COMB;

FF: PROCESS

BEGIN

WAIT UNTIL clk'EVENT AND clk="1"';
data h <= data_h d;

data h <= data_1 d;

END PROCESS FF;

unchanged <= unchanged int;
out _h <= data h;
out 1 <= data_l;

END ARCHITECTURE rtl;

Solutions, page 6 of 11

Solutions: VHDL & Logic Synthesis EE3.06

(c)

ARCHITECTURE struct OF sorter IS

TYPE array64 IS ARRAY (0 TO 64) OF std logic_vector (15 DOWNTO 0);

SIGNAL z1l, z2: arrayb64;

SIGNAL x: std logic_vector (63 DOWNTO O0);

CONSTANT kmax: std logic vector (15 DOWNTO 0)
OTHERS=>"'1");

CONSTANT kmin: std logic_vector (15 DOWNTO 0)

{(15=>'0",

(OTHERS=>"'1");

BEGIN
Gl: FOR k IN O TO 63 GENERATE
I1: ENTITY WORK.sorter_ element PORT MAP (

clk=>clk,
mode=>m,
in h => z1(k),
out h => z2(k),
in 1 => z1(k+1),
out 1 => z2(k+1),
unchanged => x(k));

END GENERATE;

ANDPROC: PROCESS (x)
VARIABLE y: std logic := '1l';
BEGIN
FOR k IN O TO 63 LOOP
y := y AND x(k);
END LOOP;
a <= vy;
END PROCESS ANDPROC;

MUXPROC: PROCESS (m,shift in)

BEGIN
IF m = "10" THEN
z1(0) <= shift in;
ELSE
z1(0) <= kmax;
END IF;

END PROCESS MUXPROC;

shift out <= z1(64);

z2 (64) <= kmin;
z2(0) <= shift in;

END ARCHITECTURE struct;

Solutions, page 7 of 11

Solutions: VHDL & Logic Synthesis EE3.06

Solution to Question 3

Part (a) tests whether the student can understand BDDs. Part (b) tests whether the student has mastered
"many-to-1" circuit description in VHDL, and part (c) tests ability to construct complex structural
VHDL descriptions.

(@) xI®(x2D (x3® x4))

OBDD

ROBDD

OBDD for # input XOR has 2"-1 nodes, corresponding ROBDD has 1+2(n-1) nodes. Ratio is

2" / (1+2(n-1)) >> 1 (increases exponentially with »).

Solutions, page 8 of 11

Solutions: VHDL & Logic Synthesis EE3.06

(b)
ARCHITECTURE rtl OF parity IS
BEGIN
P1: PROCESS (y)
VARIABLE zi: std logic;

BEGIN
zi = '0"';
FOR j IN 0 TO n-1 LOOP
zi := zi xor y(3j);
END LOOP;
z <= z1;

END PROCESS P1;
END ARCHITECTURE rtl;

(c)
ARCHITECTURE rtl struct OF big parity IS

CONSTANT Unitnum: INTEGER := (M-1)/10+1;
CONSTANT ExtralInputs: INTEGER := M - UnitNum*10;
SIGNAL zi: std logic_vector (UnitNum DOWNTO O0);

BEGIN

Gl: FOR j IN O TO UnitNum-1 GENERATE
I1: ENTITY WORK.parity GENERIC MAP (10)
PORT MAP (y (j*10+9 DOWNTO j*10),zi(3)):
END GENERATE;

G2: IF ExtralInputs /= 0 GENERATE
I2: ENTITY WORK.parity GENERIC MAP (Extralnputs)

PORT MAP(y(M-1 DOWNTO 10*UnitNum), zi(UnitNum));
END GENERATE;

G3: IF Extralnputs /= 0 GENERATE

I2: ENTITY WORK.parity GENERIC MAP (UnitNum+1)
PORT MAP(zi (UnitNum DOWNTO O0), z):;

END GENERATE;

G4: IF Extralnputs = 0 GENERATE
I2: ENTITY WORK.parity GENERIC MAP(UnitNum+l)

PORT MAP(zi (UnitNum-1 DOWNTO 0), z):;
END GENERATE;

END ARCHITECTURE rtl struct;

Solutions, page 9 of 11

Solutions: VHDL & Logic Synthesis EE3.06

Solution to Question 4

Part (a) tests whether the student can use VHDL to write simple testbenches. Parts (b), (c) tests whether
the student understands verification methodology.

()
ENTITY tbl IS
END tbl;

ARCHITECTURE behav OF tbl IS

TYPE ipr IS RECORD x1,x2: INTEGER; END RECORD;
TYPE ftype IS FILE OF ipr;
FILE fin: ftype OPEN read mode IS "stimulus_file";

SIGNAL clk, start i: std logic := '0';
SIGNAL done i: std logic;
SIGNAL x1 i, x2 i: std_logic_vector(l4 DOWNTO 0);
SIGNAL yl i, y2 i: std logic vector (15 DOWNTO 0);
SIGNAL yl int, y2 int: INTEGER;
BEGIN
DUT: ENTITY WORK.testable PORT MAP({ clk, start i, done_i, x1_ i,
x2 i,
yl i, y2_i);
clk <= NOT clk AFTER 10 ns;

yl int <= conv_integer (unsigned(yl_1i));
y2_int <= conv_integer (unsigned(y2_1i));

Solutions, page 10 of 11

Solutions: VHDL & Logic Synthesis EE3.06

MAIN: PROCESS
VARIARLE pair: ipr:
BEGIN
start i <= '0';
FOR I IN 1 TO 1000 LOOP
WAIT UNTIL clk'EVENT AND clk='1"';
END LOOP;

WHILE NOT endfile(fin) LOOP

read(fin, pair):;

x1 1 <= conv_std_logic_vector(pair.x1,15);

x2 1 <= conv_std_logic_vector(pair.x2, 15);
start i <= '1";

WAIT UNTIL clk'EVENT AND clk='1l"';

start 1 <= '0';

WAIT UNTIL clk'EVENT AND clk='l' AND done_i='l';

ASSERT yl int = fa behave(pair.xl)+fb_behave(pair.x2)
REPORT "bad yl output when x1=" & INTEGER'IMAGE (pair.x1l) &
" and x2=" & INTEGER'IMAGE (pair.x2) SEVERITY error;

ASSERT y2 int = fa_behave(pair.xl)—fb__behave(pair.xZ)+2**14
REPORT "bad y2 output when xl1=" & INTEGER'IMAGE (pair.x1l) &
" and x2=" & INTEGER'IMAGE (pair.x2) SEVERITY error;

END LOOP;
REPORT "Tests finished" SEVERITY failure;
END PROCESS MAIN;

END ARCHITECTURE behav;

b) There are 2**15 distinct inputs to fa, and the same number for fb. therefore 2**15+2%*15-1=2**16 -
Itests are needed: fixed x1 and every x2, then fixed x2 and every value of x1, with the single duplicate
test removed. This is much faster than exhaustive testing, and will check that all table values are correct
with greater certainty than random testing. However it will not test that the additions to compute y1 &
y2 are correct.

¢) Need to test all top 8 bit combis of x1,x2, total of 256+256=512 tests. Also need to check the
interpolation. Each input is defined by:

(x1high, x1low, x2high, x2low)

where high = top 8 bits, low = bottom 7 bits.

Various strategies are possible, e.g. the following 1024 tests:
(x,0,0,0)(x=0to 255)

(0, 0, x, 0) (x=0 to 255)

(rnd, x, rnd, rnd) (x=0 to 255)

(rnd, rnd, rnd, x) (x=0 to 255)

Where each rnd is a separate randomly generated number.

Solutions, page 11 of 11

