E3.06
AC5
ISE3.5

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2006

MSc and EEE/ISE PART IIlI/IV: MEng, BEng and ACGI

Corrected Copy
VHDL AND LOGIC SYNTHESIS f

Friday, 28 April 10:00 am

Time allowed: 3:00 hours

There are FOUR questions on this paper.

Question 1 is COMPULSORY
Answer question 1 and any TWO of questions 2-4
Question 1 carries 40% of the marks, questions 2-4 each carry 30% of the

marks.

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : T.J.W. Clarke, T.J.W. Clarke
Second Marker(s) : G.A. Constantinides, G.A. Constantinides

© University of London 2008

L3
204 MG | SErE L) JsEmmt
gsast _n

DR SIVIEAS TIRIRT O30T G RIS 25 TasT S 30
AU, ST s il 5

122555 ot g 38 = BiA okl FSAS 20T el ZM

EIEFTHYE D180 Gng Y

e e ©f big= E5F LI i

S D0 L eils A

wosg il ro eno eeup KUECS ove sudl

 YRDEIUEOD & | nelEsHQ

vy mnlbzaug bo OWT yos bae 1 nodsgis yewvendk

ot 10 FEBE yiien Aads XL anoifasup o o1 2708 abiins | nivlesull
ZRag

wel Acmeatd e evesliyian ol eealineenl 1sivese wni
I pgetc o =is 2elitilnind

it ﬂ:l w LT g w T e rersmalbd iey™ JI e T et s ST

MLaETane g A D pepngTEneD f 5 (g e el RISy o

a4

S w B e

Special Information for Invigilators: none.

Information for Candidates
VHDL language reference and course notes can be found in the booklet VHDL Exam Notes.
Unless otherwise specified assume VHDL 1993 compiler.

Library functions from the VHDL package utility_pack used in the coursework may be used
freely in your implementations.

VHDL & Logic Synthesis page 1 of 6

The Questions

Question 1 is COMPULSORY

1. a)

b)

d)

Determine the precise behaviour of process P1 in Figure 1.1. Is this process synthesisable?

[4]

Figure 1.2. shows an entity count for a counter with count output pout, control
inputs /imit and set, and carry output cout. If set is '0' the counter must count up
with an increment of 1 on every positive edge of c/k until it reaches a count of
limit. 1t must then reset with 0 being the next count. If set is '1' the counter must
set pout equal to limit independently of c/k. Write a synthesisable architecture for

count.

(4]

In process P2 of Figure 1.3 determine the delay, both physical time and, if
relevant, simulation delta time, between events on clk, and corresponding events
on a, b, ¢, d. You may assume that c/k changes in A(0).

[4]

Write a synthesisable VHDL architecture for entity jiggle in Figure 1.4 in which
z is a combinational function of x and y:

z(i) = x(i), when i is even,
2(i) = y(size - i - 1) xor (i) when i is odd.

You may find it useful to note that, for non-negative integers a and b, a MOD b
in VHDL is the integer remainder when a is divided by b.

(4]

(1) Write an entity sq with n bit std_logic_vector input port x, bits numbered
from n-1 (MSB) to 0 (LSB) and #* bit std_logic_vector port y, bits
numbered from #%-1 (MSB) to 0 (LSB). It must be possible to input &
output data on each of the bits (7). Hint - use an integer generic.

(ii) Write an architecture testsq_arch in which two copies of sq are used, the
two y ports are connected together, and the two x ports are connected to a
10 bit vector of zeros. You need not write an architecture for sq.

[4]

VHDL & Logic Synthesis page 2 of 6

P1l:PROCESS
BEGIN
WAIT UNTIL rst = '0';
FOR i IN 0 TO 99 LOOP
clk <= '0';
WAIT FOR 10 ns;
clk <= *1%;
WAIT FOR 5 ns;
END LOOP;
WAIT UNTIL rst = '1l';
END PROCESS P1;

Figure 1.1

ENTITY count IS
PORT (:
clk, set: IN std logic;

limit: IN std logic vector (15 DOWNTO 0) ;
cout: OUT std logic;

pout: OUT std logic_vector (15 DOWNTO 0)
)

END count;

Figure 1.2

P2:PROCESS (clk,a,b)
VARIABLE xv : std logic;
BEGIN
xv := clk;
<= xXVv;
<= clk;
= not clk;
<= not b;
<= b AFTER 20 us;
PROCESS P2;

Onobuoe
i

EN

Figure 1.3

ENTITY jiggle IS
GENERIC(size: INTEGER) ;
PORT (
X,y: IN std logic vector(size-1 DOWNTO O0);
z: OUT std logic_vector(size-1 DOWNTO 0)
) ;
END jiggle;

Figure 1.4

VHDL & Logic Synthesis page 3 of 6

Students must answer TWO out of Questions 2-4.

2. A synchronous first-in-first-out memory (FIFO) may be designed from a size word
synchronous dual-port RAM and two counters p and g each of length counter_length. An
entity fifo for the FIFO is given in Figure 2.1. The operation of the FIFO is controlled by
two inputs inputitem and outputitem as shown in Figure 2.2. When p = ¢ it is assumed
that the FIFO is empty. A '1' input on reset will synchronously reset the FIFO to the
empty state. All operation is synchronous with the positive edge of c/k. Note that
Figure 2.2 specifies the value of dataout in the current clock cycle, and the values of p, g
and mem[p] in the next clock cycle. The notation mem([x] represents the RAM location

with address x.

a)

Write a synthesisable architecture to implement the FIFO. Your architecture

should use ASSERT statements to ensure that size is a multiple of 4, and if not
terminate with an appropriate error message. You may assume that overflow and

underflow conditions never occur.

b)

Implement two additional std_logic outputs nearlyfull and nearlyempty which are

'1" when the number of FIFO items stored, n, satisfies # > (3/4)size and

n < size/ 4 respectively. You may assume that std logic output ports nearlyfull
and nearlyempty have been added to the fifo entity.

ENTITY fifo IS

GENERIC (size :

PORT (

INTEGER; counter length :

clk, inputitem, outputitem, reset :

datain
dataout :

)
END fifo;

Figure 2.1

INTEGER) ;

IN STD LOGIC;
IN STD_LOGIC_VECTOR (7 DOWNTO 0) ;
OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

[16]

[4]

—

Next cycle

Current cycle

inputitem

outputitem p

q

mem|p]

dataout

0 0

P

q

mem[p]

High impedance

P

(g+1) mod size

mem|[p]

mem[q]

(pt+1) mod size

q

datain

High impedance

0 1
1 0
1 1

P

q

mem|p]

datain

VHDL & Logic Synthesis

Key: mem[x] = RAM location with address x

Figure 2.2

page 4 of 6

3. Six m bit numbers x(0) to x(5) can be added using a tree of csadd blocks CS0 - CS3 as in
Figure 3.1. The bit range of each bus connection is indicated by a:b on the connection
where a,b are the MSB and LSB bit numbers. Unconnected bit positions on ports, such as
p(0) of CS3 should be set to '0".

Each csadd block has three » bit inputs p, ¢ and » and two # bit outputs s and ¢ with bit
values as shown in Figure 3.2. The value of » is m or m+2 in each instance of csadd as
indicated in Figure 3.1. The » bit outputs ¢ and s represent the set of carries and sums
formed by adding the three inputs separately at each bit position:

c(i+1) is'l'if two or more of p(i), g(7), ¥(i) are 1.
s(7) is'l' if an odd number of p(i), (i), r(i) are 1.

Note that ¢sadd ¢ ports have bit numbering one greater than that of ports p, ¢, » and s.
The output y is calculated by using an m+3 bit adder, labelled 4DD in Figure 3.1.

a) Write a synthesisable architecture for block csadd in Figure 3.2.

b) Write a package cspack containing appropriate constants and/or types needed to
define the ports of the hardware block in Figure 3.1. Using cspack write an entity
csaddtree for this block.

(5]
c) Write an architecture for csaddiree using instances of csadd together with other
combinational logic as appropriate.
[10]
x(0) m-1:0 r o m:1 P C m+1:2
i csadd % csadd .
(1) m-1:0 0 m-1:1 0 P C mt2:1
-1: " m ol iy | Edd + +2:0
x2) Bl0f, " a1 =y
S0 0 o] mé3 |
CS2 R S m+3
X3) m-1:0 P C m:]
esadd 53 ADD
. m i
5) m-1:0 g m-1:0
Figure 3.1
ENTITY csadd IS
GENERIC(n : INTEGER); -- number of bits in this block
PORT (
P e £ - EN STD“LOGIC_VECTOR(n-1 DOWNTO 0) ;
c : OUT STD_LOGIC_ VECTOR(n DOWNTO 1); -- carry bits
s : OUT STD_LOGIC VECTOR(n-1 DOWNTO 0) =-- sum bits
)
END csadd;

Figure 3.2

VHDL & Logic Synthesis page 5 of 6

4. A "sea of gates" FPGA architecture consists of 2-input AND/NAND blocks, with both
inverting and non-inverting outputs as shown in Figure 4.1. These may be connected
together arbitrarily to make combinational logic. Figure 4.2 shows a critical path for a
node y after device-dependent synthesis to this architecture. One step in the synthesis
algorithm uses transduction about point M to shorten the length of this critical path.

(a) Indicate the circuit for y after transduction, using a multiplexor and give a
Boolean expression for the multiplexor control input.

[10]

(b) Using the available block in Figure 4.1, write the circuit diagram of an
implementation of the multiplexor control input such that the number of blocks
from any input to the output is minimised.

(3]

(©) You may assume that every AND/NAND block in the target architecture
introduces one unit of delay between inputs and both non-inverting and inverting
outputs. You may further assume that a multiplexor may be implemented with 2
units of delay from data inputs to data output, and 2 units of delay from control
input to output. What is the worst case delay from any of x0, ..., x8 to y before
and after the transduction?

(3]

(d) Denoting the multiplexor control input by ¢, write down the ROBDD for y as a
function of ¢ and x0-x8 with variable order ¢, x8, x7, ..., x0.

(4]

Figure 4.1

x0

&h | &b T | &p_] &_AIL&J&;J NI N
| = T

= T

x1 x2 x3 x4 x5 x6 x7 x8

Figure 4.2

VHDL & Logic Synthesis page 6 of 6

§ls = kg @ g
VHDL 2006 SOLUTIONS

£9.04 ffre 7.0/ Aes

Question 1 is COMPULSORY, and constitutes 40% of marks, 72 minutes time.

Solution to Question 1.

a) Not synthesisable. Behaviour:
1) waits till rst="0".
2) repeats 100 times, sets clk to 0, wait 10ns, set clk to 'l', wait 5ns

3) waits till rst is '1", and then repeats from 1)

[4]

b)
ARCHITECTURE synth OF count IS

SIGNAL po : STD_LOGIC_VECTOR (15 DOWNTO 0) ;
BEGIN

pout <= po;

Pl: PROCESS (clk,set)

BEGIN
IF set = 'l' THEN
Po <= limit;

ELSIF clk'EVENT AND clk = '1' THEN
IF po = limit THEN
po <= (OTHERS => '0');
ELSE
po <= UNSIGNED (po)+1;
END IF;
END IF;
END PROCESS P1;
END ARCHITECTURE synth;

4]

c) a:ldelta,b: 1 delta, ¢ : 2 delta, d : 20us + 0 delta
(4]

VHDL & Logic Synthesis SOLUTIONS page 1 of 5

VHDL 2006 SOLUTIONS

d) could implenent this using FOR GENERATE but this is more cumbersome
ARCHITECTURE synth OF jiggle IS

BEGIN -- synth

Pl : PROCESS(x, y)
BEGIN
=z <= x;
FOR i IN 0 TO size LOOP
IF i MOD 2 = 1 THEN
z(i) <= y(size-i-1) XOR y(i);
END IF;
END LOOP;
END PROCESS P1l;

END synth;
[4]
e)

ENTITY sq IS

GENERIC (
n: INTEGER
)

PORT (
x : IN STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
y : INOUT STD_LOGIC VECTOR(n*n-1 DOWNTO 0)
)i

END sqg;

ARCHITECTURE testsqg_arch OF testsq IS
SIGNAL y int : STD_LOGIC_VECTOR(Q DOWNTO 0) ;
BEGIN -- testsg

I1 : ENTITY sq GENERIC MAP(10) PORT MAP(x => (OTHERS => '0'), y => y_int);
I2 : ENTITY sq GENERIC MAP(10) PORT MAP(x => (OTHERS => '0'), y => y_int);

END tes tsq_arch;
[4]

VHDL & Logic Synthesis SOLUTIONS page 2 of 5

VHDL 2006 SOLUTIONS

Students must answer two questions from questions 2-4, each question caries 30% of marks and takes 54
minutes.

Solution to Question 2

This questions tests ability to write behavioural VHDL code.

3
ARCHITECTURE synth OF fifo IS

TYPE memtype IS ARRAY (0 TO size-1) OF STD_LOGIC VECTOR (7 DOWNTO 0) ;
SIGNAL mem : memtype; -- the RAM
SIGNAL code : STD_LOGIC_VECTOR(1 DOWNTO O0) ;
SIGNAL p, q : STD_LOGIC VECTCOR(counter_ length-1l DOWNTO 0);
BEGIN

ASSERT (size/4)*4 = size REPORT "size is not a multiple of 4 in fifo instance";
code <= (inputitem, outputitem) ;

Pl : PROCESS
BEGIN
WAIT UNTIL clk'EVENT AND clk = '1l°';
CASE code IS
WHEN "01" =>
q <= conv_std logic_vector (conv_integer (UNSIGNED (p)+1) MOD size, counter length);
WHEN "10" => - - -
mem(p) <= datain;

P <= conv_std logic vector (conv_integer (UNSIGNED (p)+1) MOD size, p'LENGTH) ;
WHEN OTHERS => NULL;
END CASE;

END PROCESS P1;

P2 : PROCESS (datain, code, mem)

BEGIN
CASE code IS
WHEN "Q1" => dataout <= mem(conv_integer (UNSIGNED (q))) ;
WHEN "11v => dataout <= datain;
WHEN OTHERS => dataout <= (OTHERS => 'Z');
END CASE;

END PROCESS P2;

P3 : PROCESS(p, q)
BEGIN

nearlyempty <= '0'; nearlyfull <= '0';

IF (UNSIGNED (q)-UNSIGNED (p)) < conv_signed(size/4, counter length) THEN
nearlyempty <= 'l'; END IF;
IF (UNSIGNED(q)-UNSIGNED(p)) >= conv_unsigned(3*size/4, counter length) THEN
nearlyfull <= '1"'; -
END IF;
END PROCESS P3;

END ARCHITECTURE synth; ~-- of fifo

VHDL & Logic Synthesis SOLUTIONS page 3 of 5

VHDL 2006 SOLUTIONS

Solution to Question 3

This question tests ability to understand structural descriptions and write code for structural VHDL.

a)
ARCHITECTURE synth OF csadd IS

BEGIN
Pl : PROCESS(p, q, r)
BEGIN
s <= p XOR g XOR r;
c <= (p AND gq) OR (p AND r) OR (g AND r):;
END PROCESS pl;
END synth;

b)
PACKAGE cspack IS
CONSTANT mconst : INTEGER := 10; -- change as necessary
TYPE xtype IS ARRAY (0 TO 5) OF STD LOGIC VECTOR (mconst-1 DOWNTO Q).

END package cspack;

ENTITY csaddtree IS
PORT (
x : IN xtype;
y : OUT STD_LOGIQ;VECTOR(mconst+2 DOWNTO 0)
)i
END ENTITY csaddtree;

c)
ARCHITECTURE synth OF csaddtree IS
SIGNAL sl, s2 : STD_LOGIC_VECTOR (mconst-1 DOWNTO 0);

SIGNAL cl, c2, s3, g3 : STD_LOGIC_VECTOR (mconst DOWNTO 1)

SIGNAL c3 : STD_LOGIC_VECTOR(mconst+1 DOWNTO 2) ;

SIGNAL s4, g4, r4, p4 : STD LOGIC_VECTOR (mconst+2 DOWNTO 1);

SIGNAL c4) STD_LOGIQ_VECTOR(mconst+1 DOWNTO 0) ;
BEGIN

CSO:ENTITY csadd GENERIC MAP (mconst) PORT MAP(x(0), x(1), x(2), cl, sl);
CS1:ENTITY csadd GENERIC MAP (mconst) PORT MAP(x(3), x(4), x(5), c2, s2);

g3 <= '0'& sl (mconst-1 DOWNTO 1) ;
gd <= '0' & s3 & s1(0);

rd <= "00" & s2;

p4 <= c3 & "00";

CS2 : ENTITY csadd GENERIC MAP(mconst) PORT MAP(cl, g3, c¢2, c3, s3);
CS3 : ENTITY csadd GENERIC MAP(mconst+2) PORT MAP(p4, g4, r4, c4, sd);

y <= UNSIGNED(c4 & '0')+UNSIGNED('0' & s4);
END ARCHITECTURE synth;

VHDL & Logic Synthesis SOLUTIONS page 4 of 5

VHDL 2006 SOLUTIONS

Solution to Question 4

This question is a new application of taught algorithms

a)ec = x8.x7.x6.x5

| & | &S | &b 0
Il
X7

x8

xl x2 x3 x4 A

b)

x5 —

& | &l ¢

x6 —

x7 &J

x8 —1
c) Before, 8. After, 6 (from x0,x1).
d)

©)
° \‘
| = 0
(%)

& | : !

VHDL & Logic Synthesis SOLUTIONS page 5 of 5

T _
Tontbreong’s st Do eorior Seepi e e 2 toivad 2l
3n. M0, Tx 8x = o

&
h]

o
[~ le

L

T

e

4 -

LU Tk adet) B pedUA L ewolel (@

%2 g

BT SO rieadtaye, smmd 7 JTHTY

