E3.06

IMPERIAL COLLEGE LONDON AC5
ISE3.5

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2005

MSc and EEE/ISE PART WI/IV: MEng, BEng and ACGI

VHDL AND LOGIC SYNTHESIS

Monday, 25 April 10:00 am

Time allowed: 3:00 hours

Corrected Copy

There are FOUR questions on this paper.

Question 1 is COMPULSORY

Answer question 1 and any TWO of questions 2-4

Question 1 carries 40% of the marks, questions 2-4 each carry 30% of the
marks.

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : T.J.W. Clarke
Second Marker(s) : G.A. Constantinides

© Jniversity of London 2005

This page is intentionally left blank

[E3 06/1SE3.5/ACS5]

Special Information for Invigilators: none.

Information for Candidates
VHDL language reference and course notes can be found in the booklet VHDL Exam Notes.
(nless otherwise specified assume VHDL 1993 compiler.

Library functions from the VHDL package utility_pack used in the coursework may be used
freely in your implementations.

{E3 06/ISE3.5/AC5] Page 1 of 7

a) Determine the precise function of process P1 in Figure 1.1. Is this process
synthesisable? Describe a VHDL design technique which can be used to
prevent unintentional synthesis of transparent latches from processes with
complex conditional statements.

(4]

b) Figure 1.2. shows an entity shift for a shift register with parallel output pout,
control input dir, serial data input sin, and output sout. When dir is 1 the
register must shift 1 bit left, with sin providing the new LSB and souf equal
to the old MSB. Conversely when dir is 0 the register will shift 1 bit right,
with the new MSB equal to sin and sout equal to the old LSB. Write a
synthesisable architecture for shift.

(4]

<) In process P2 of Figure 1.3 determine the delay, both physical time and, if
relevant, simulation delta time, between events on clk, and corresponding
events on a, b, ¢, d. You may assume that c/k changes in A(0). What will be
the resulting circuit from synthesis of this process?

d) Write a synthesisable VHDL architecture for entity switch in Figure 1.4 in
which y is a combinational function of x:

V(i) = x(i+1) xor x(i-1), when i is odd,

y(7)=0 when i is even.

[4]

e)
(i) Write a synthesisable entity and architecture describing
combinational logic that compares an unsigned 8 bit input x
represented by a std_logic_vector signal with a GENERIC
integer n to generate outputs equal and less, whichare '1' if x =n,
x < nrespectively. Your architecture should terminate with a failure
ASSERT if simulated with a value of n greater than 255 or less than
0.
(2]

(ii) Determine how the hardware synthesised from this architecture will

simplify when n = 0.
(2]

[E3.06/ISE3.5/ACS5] Page 2 of 7

{E3.06/ISE3.5/ACS5]

P1:PROCESS(clk, din, rst)

BEGIN
IF rst = '1' THEN

dout <= "00000";

ELSIF clk = '0' THEN

dout <= din;

END IF;
END PROCESS P1l;

Figure 1.1

ENTITY shift IS

PORT (

clk, sin, dir: IN std_logic;

sout: OUT std_logic;

pout: OUT std_logic_vector (15 DOWNTO 0)
)i
END shift;

Figure 1.2

P2:PROCESS (clk, a, b)
VARIABLE x : std_logic;

BEGIN

a <= clk;

b <= a;

x := clk;

d <= x;

c <= b AFTER 10 ps;
END PROCESS P2;

Figure 1.3

ENTITY switch IS

PORT (
x: IN std _logic_vector(1000 DOWNTO 0);
y: OUT std_logic_vector(1000 DOWNTO O0)
)
END switch;

Figure 1.4

Page 3 of 7

']

b)

The times #,, 14, ; of a signal clk are illustrated in Figure 2.1. The VHDL process
CLKMON must print out a warning error if any of the following conditions are
violated:

1, <t, <1,
Ith _tll <o

Where 1,, f3, toew are times defined by VHDL constants TA, TB, TSKEW
respectively which you are given. You may assume the existence of a signal clk]
which is identical to c/k but delayed 1 simulation A. Using the VHDL
LAST_EVENT signal attribute, where x'LAST_EVENT returns the time elapsed
from the most recent event on signal x, or otherwise, write CLKMON.

Write a behavioural architecture for VHDL entity sig_gen in Figure 2.2 which
drives the output x with a pseudo-random bit-stream, so that x changes on the
positive edge of clk. Your driver must randomly sample all possible bit-streams
subject to the constraints that no more than 5 consecutive '1' bits or 10
consecutive '0' bits are allowed. You are given a function:

FUNCTION random(low, high: INTEGER)RETURN INTEGER;
The return value of RANDOM is a pseudo-random integer in the range Jow to
high. Repeated calls to the function may therefore be used to generate pseudo-
random numbers.

A
v

clk » |

Iy

A
v

4]

Figure 2.1

ENTITY sig_gen IS
PORT (
clk: IN std_logic:;
x: OUT std_logic
)i
END sig_gen;

Figure 2.2

[E3.06/ISE3.5/AC5] Page 4 of 7

[10]

[10]

fad

The VHDL entity comp_ram in Figure 3.1 describes a clocked (synchronous) RAM with
two 1/O channels. The generics wordlength and addrlength respectively specify the word-
length and the number of address bits in the RAM. The number of locations (words) is
therefore 28" The RAM operates synchronously with the positive edge of clk. The
two channels are labelled a, 5. Each channel has identical operation and comprises an
address bus, addr; a bidirectional data bus, data; and a control bus, mode. Entity ports
have as suffix the name of the channel, thus port addr b is the address bus for channel b.
The operation of a channel is determined, each cycle, by the value of its corresponding
mode port, as shown in Figure 3.2. There are 4 possible modes of operation: read, write,
add and nop, as determined by the value of mode, also shown in Figure 3.2.

When mode is "00" the bus dara is driven with the contents of the addressed RAM
location. When the mode is "01" or "10" the addressed location is written with the value
indicated in Figure 3.1. Note that in this case Y is the value input on port data, and that in
these modes, as well as the "11" mode, data is not driven by comp_ram.

Each channel operates independently, except when both channels write or add to the same
location. In this case a write prevails over an add, however two add operations are
combined correctly, with the addressed RAM location's contents changed as if the two
operations had happened sequentially. In case of two write operations to the same
location the write from channel b is ignored. Note that RAM contents are only changed
by a write on the clock edge, so a read from a write location will return the old value.

a) Explain the significance of data_a, data_b ports having VHDL mode INOUT.
(1]

b) Write a synthesisable VHDL architecture to implement comp_ram.
[15]
c) Determine (i) the number of flip-flops and (ii) the number and size of
multiplexors synthesised from your architecture. Discuss the number of
wordlength bit adders synthesised.
[4]

ENTITY comp_ram IS
GENERIC(wordlength, addrlength : INTEGER);

PORT (
addr_a, addr_b : IN STD_LOGIC_VECTOR(addrlength-1
DOWNTO 0);
data_a, data_b : INOUT STD LOGIC VECTOR(wordlength-1
DOWNTO 0);

mode_a, mode_b : IN STD LOGIC VECTOR(1l DOWNTO O0):
clk: IN std logic
)
END comp_ ram;

Figure 3.1
mode data RAM operation
"00" (read) Qutput: ram(addr) Read
"01" (write) | Input: ¥ ram(addr) < Y
"10" (add) Input: ¥ ram(addr) «<ram(addr) +Y
"11" (rop) High impedance None

ram(addr) is the contents of ram location addressed by addr
Y is the external data driven onto the bus data

Figure 3.2

{E3.06/1SE3.5/ACS5] Page 5 of 7

a) The Boolean expression x is defined in Equation 4.1, where @ denotes xor.
x=(a+b).(c+(d®De)) 4.0

For variable order a, b, c, d, e, by simplifying an ordered binary decision
diagram or otherwise, derive the reduced ordered binary decision diagram
(ROBDD) for x. Draw your ROBDD with 0 (1) edges to the left (right).
(6]

b) VHDL Entity add in Figure 4.1 describes a fast adder block provided by a
VLSI library. The adder block is available only in bit-widths equal to powers
of 2. The generic n (n > 0) controls the adder bit-width, which equals 2",
Multiple add blocks of different sizes can be connected as shown in Figure
4.2 to implement addition of arbitrary bit-width. Let m be a positive signed
32 bit integer with binary expansion m(i) (0 < i < 30), where m(0) is the LSB.
Consider the sum:

k-1
Mk)=Y"m@)2'. 4.2)
i=0
Clearly:
m=M(31)
M@GE+D)-M@G)=m()2
It is proposed to implement m bit addition as in Figure 4.2 using at most]

add block of any given length, such that the add block size increases
monotonically from LSB to MSB.

4.3)

Show, using Equations 4.3 or otherwise, that this can be effected by using an
add block of width 2" to add from bits M(i) to M(i+1)-1 only for those i such
that m(i)=1.

You are given a VHDL function:
FUNCTION mcalc(i: INTEGER)RETURN INTEGER;

that computes the function M(7), and may assume the result of this function is
a VHDL constant expression providing that its argument is also a constant
expression. Complete the architecture struct of entity adder in Figure 4.3,
adding to the architecture body and declaration section as necessary, to make
a synthesisable VHDL implementation of adder which will incorporate the

appropriate add blocks for any positive value of m.
[14]

[E3 06/ISE3.5/AC5) Page 6 of 7

ENTITY add IS
GENERIC(n: INTEGER);

PORT (
p,q: IN std logic_vector(2**n-1 DOWNTO 0);
sum: OUT std logic_vector(2**n-1 DOWNTO 0);
cin: IN std_logic;
cout: OUT std _logic
)i
END add;
Figure 4.1
7
q —7
7,
P 7
40 4y 24 2, 1y 1]
p q P q p q
add add add
0 —cin cout cin cout cin cout
sum sum sum
44 24 1
7’ sum
Figure 4.2

ENTITY adder IS
GENERIC(m: INTEGER);

PORT (
p,q: IN std logic_vector(m-1 DOWNTO 0):
sum: OUT std logic_vector (m-1 DOWNTO 0)
)i
END adder;

ARCHITECTURE struct OF adder IS
CONSTANT ms: std_logic_vector (30 DOWNTO 0) :=
conv_std_logic_vector(m, 31);
SIGNAL carry: std logic_vector (31 DOWNTO 0);
BEGIN

END ARCHITECTURE struct;

Figure 4.3

[E3 06/ISE3.5/AC5) Page 7 of 7

Lo E 0 Le b f&NTH&SJ“ Noata = LA & o™

C e v Solutions [E3.06/ISE3.5/AC5]

Question 1

a)

This synthesises correctly and is a 5 bit transparent latch with output dout, active high
asynchronous reset rst and active low clock clk. Setting all driven signals to default
values at the start of a process will prevent unintentional latch synthesis (and also
usually simplify the code).

ARCHITECTURE shift arch OF shift IS
SIGNAL poutl: std _logic_vector (15 DOWNTO 0);
BEGIN

SHIFT: PROCESS
BEGIN
WAIT UNTIL clk'EVENT and clk='l";
CASE dir IS
WHEN '0' =>
poutl (14 DOWNTO 0) <= poutl{1l5 DOWNTO 1)
poutl(15) <= sin;
sout <= poutl(0);
WHEN '1' =>
poutl (15 DOWNTO 1) <= poutl (14 DOWNTO 0);
poutl (0) <= sin;
sout <= poutl(1l5);
WHEN OTHERS => NULL; -- prevent compiler errors
END CASE;
END PROCESS SHIFT;

pout <= poutl;

END shift arch;

clock -> a delay 1 delta
clock -> b delay 2 delta
clock -> ¢ delay 10 ps O delta
clock -> d delay 1 delta

During synthesis the AFTER delay is ignored and nets a, b, ¢, d will all be connected
directly to clk. synthesis will succeed.
ARCHITECTURE switch _arch OF switch IS

BEGIN

P1: PROCESS (x)

BEGIN
FOR 1 IN 0 TO 1000 LOOP
y(i) <= '0";

IF i MOD 2 = 1 THEN
y(i) <= x(i-1) =or x(i+1);
END IF;
END LOOP;
END PROCESS P1;

END switch arch;

{1:3.06/ISE3.5/AC5] Page 1 of 6

Solutions [E3.06/ISE3.5/AC5]

Question 1 (contd).

e)

ENTITY compare IS5

GENERIC{(n: INTEGER);

PORT (
x: IN stdwlogicﬁvector(7 DOWNTO 0) ;
equal, less: OUT std logic

END compare;
ARCHITECTURE synth OF compare IS
BEGIN

ASSERT n »>= 0 and n < 256 REPORT "n is out of range" SEVERITY
failure;

£1l: PROCESS (x)
BEGIN
equal <='0";
less <= '0';
IF unsigned(x) = conv_unsigned(n,8) THEN equal <= '1"';
END IF;
IF unsigned(x) < n THEN less <= '1'; END IF;
END PROCESS P1;

END synth;

If n = 0 then /ess is always '0' and requires no hardware. equal requires an 8-input
NOR gate or equivalent for the comparison with 0.

(1:3.06/ISE3.5/AC5) Page 2 of 6

Solutions [E3.06/ISE3.5/AC5]

Question 2
a)

TLEMON: PROCESS (clk)
YARIABLE thigh, tlow: TIME;

HEGIN
13 clk='0" THEN
thigh := ¢lk1'LAST EVENT;
FLSE
tlow := clk1l'LAST EVENT;
END IF;

AZSERT abs (thigh-tlow) < TSKEW
REPORT "SKEW error" SEVERITY warning;
ASSERT thigh + tlow < TB and thigh+tlow > TA
REPORT "Clock period error" SEVERITY warning;
FNT vROCESS CLKMON;

bi

ARCALITECTURE behave OF sig gen IS
SIGNAL x1: std logic;

PROCESS
VARIABLE x new: std logic;
VARIABLE count: INTEGER:= 0;

FEisIN
WAIT UNTIL clk'EVENT and clk='1l"';
IF random(0,1)=1 THEN -- set random next value
X new := '1"';
ELSE
x new := '0';
END IF;
IF (xl xor x new) = '1' THEN
count := 1;
FELSE
count := count +1;
END IF;
IF ((count > 5) and (x1='1")) OR ({(count > 10) and (x1='0"))
THEN
X _new:= not x new; —-- correct if violates conditions
count := 1;
END IF;

xl <= x _new;
“HND PROCESS P1;

x1;

END behave;

[E3 06/ISE3.5/ACS] Page 3 of 6

Solutions [E3.06/ISE3.5/AC5]

Question 3

a) INOUT used because bidirectional bus requires input & output from data ports.

b)
[SNTITY comp ram IS
‘ SENERIC(wordlength, addrlength : INTEGER);
Bl]RT {
addr _a, addr_b : IN STD LOGIC VECTOR(addrlength-1 DOWNTO 0);
data_a, data_b : INOUT STD LOGIC VECTOR(wordlength-1 DOWNTO 0);
mode a, mode b : IN STD LOGIC VECTOR(1 DOWNTO 0);
~lk: IN std logic B -

ENDD comp ram;

(entity is given)

"HITECTURE synth OF comp ram IS

ATYPE ram_word IS std_logic vector(wordlength-1 DOWNTO 0);
SYFE ram array IS ARRAY (0 TO 2**addrlength-1) OF ram word;
G IGNAL ram: ram array;

it
ESOTN

Ea: FLOCK (mode a="00")

= GUARDED ram(conv_integer(unsigned(addr_a)));
BA;

{mode b="00")

it
tata b <= GUARDED ram{conv_integer (unsigned(addr b)));
I BLOCK BB;

“W: FROCESS
VARTABLE a,b: INTEGER;
VARIABLE rb: ram word;

NEIT UNTIL clk'EVENT and clk='1"';
;= conv_integer (unsigned(addr a));
1= conv_integer (unsigned(addr b)) ;

'hSE mode b IS

WHEN "01" => rb := data b;
WHEN "10" => rb := unsigned(datawb)+unsigned(ram(b));
JHEN OTHERS => NULL;

NI CASE;

- keep rb in a variable to use later if required
~mibY <= rb;

s mode a IS

"01" => ram(a) <= data_a;

"10" => ram{a) <= unsigned(data a)+unsigned(ram(a));
OTHERS => NULL;

N CASE;

a=pb and mode_a="01" and mode b="01" THEN
rami{a) <= uﬁéigned(data_a) + unsigned(rb) ;
N[+ IF; -- specilal case
NI FROCESS PW;

Svnth;

113 06/1SE3.5/ACS] Page 4 of 6

Solutions [E3.06/ISE3.5/AC5)

Question 3 (contd)

wordlength* (2**addrlength) flip-flops. Two (2**addrlength) -> 1
multiplexors. Probably need only two wordlength adders since for the a = b add case
good synthesis will reuse the separate a, b adders. Code written to enable this. At
most need 3 adders since one adder is explicitly reused in the code.

Question 4.

aj ROBDD:

o

[13.06/1SE3.5/ACS] Page 5 of 6

Solutions [E3.06/ISE3.5/ACS5)

Question 4 (contd).

b)

ENTITY add IS
GENERIC(n: INTEGER);

PORT {
p,a: IN std logic_vector; -- length must be 2**n
sum: OUT std logic vector; -- length must be 2**n
cin: IN std logic;
cout: OUT std logic

)i

END add;

ENTITY adder IS
GENERIC(m: INTEGER);

PORT (
p,q: IN std logic vector; -- length must be m
sum: OUT std logic vector; -- length must be m
)i
END adder;

(entities are given)

From Equation 4.3, m can be decomposed into the powers of 2 for which the
corresponding bit m(j) is 1. Each such bit has a corresponding add block, when
concatenated these blocks add up the m bits. If m(i))=1, then M(i+1)-1:M(i) has 2’ bits
and corresponds to a single add block.

ARCHITECTURE synth OF adder IS
CONSTANT ms: std logic vector (30 DOWNTO 0)
:= conv_std logic vector (m, 31);

SIGNAL carry: std logic vector (31 DOWNTO 0);
FEGIN
Gl1:FOR i IN O TO 30 GENERATE

G2:IF ms(1)="1'" GENERATE

I1l: ENTITY add

GENERIC MAP (i)

PORT MAP (p(mcalc(i)+2**i-1 DOWNTO mcalc(i)),
g(mcalc(i)+2**i~1 DOWNTO mcalc(i)),
sum(mcalc (i)+2**i-1 DOWNTO mcalc(i)),
carry (i),
carry(i+1)); -- instantiate the add block

END GENERATE G2;

G3: IF ms{i)='0" GENERATE
carry(i+l)<= carry(i); -- bypass this stage
END GENERATE G3;
END GENERATE G1;
carry(0) <= '0'; -- set the LSB carry to 'O’

END ARCHITECTURE synth;

[1:3.06/1SE3.5/AC5) Page 6 of 6

