Paper Number(s): E3.06
AM2
ISE3.5

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2002

MSc and EEE/ISE PART II/TV: M.Eng., B.Eng. and ACGI

VHDL AND LOGIC SYNTHESIS

Friday, 26 April 10:00 am

There are SIX questions on this paper.

Answer FOUR questions.
| vy
Cocveded ety [F
Time allowed: 3:00 hours Q 6 (O . \g
g
Examiners responsible: d@
First Marker(s): Clarke,T.J.W. O{ g oo nU 9 , b Lo
v .

Second Marker(s): Cheung,P.Y.K. _
Qat wek~g 1o. 24

Special information for invigilators: Students may bring any written or printed aids into this
examination.

Information for candidates: None.

E3.06/ISE3.5/AM2 Page 1 of 9

a)

b)

Figure 1.1 shows the entity of a hardware sine function generator sinegen with input x, output y, and
generic parameters 1, . The two's complement signed number x has n bits to the left, and m bits to the
right, of its fixed point. It can thus represent a real number in the range (2*' - 2°) to -2*!, The
sinegen entity implements the sine function over this range by using one instance of the entity
sine_lookup, also in Figure 1.]1. Sine_ lookup is a combinational block you are given that
implements the sine function over the limited range 0-2%. The sinegen entity operates as in Figure
1.2. The input x is first changed to its absolute value, xabs, and then, by subtracting the appropriate
multiple of 27, to a number xbase in the range 0-2%, which is passed to the input of sine_lookup.
The output y is driven from the output of sine_lookup, or its negation, as shown in Figure 1.2
Fixed point arithmetic, with m bits to the left of the fixed point, is used throughout to represent real
numbers, and the implementation of sinegen is purely combinational.

Assuming that the output of sine_loo kup is the sine of its input, explain how sinegen implements
y = sin(x), and why the lengths of xabs, xbase, y are as specified in Figure 1.2

5]

Let i be any integer > 0. If % is a number in the range 0 to 2'2m, explain why the output of a
comparator/subtractor/multiplexor:

s, =ifu; < 2+! 27t then u; else u; - VAR

lies in the range 0 to 2+ 21 Hence draw a diagram indicating how such units, cascaded, can be used to
convert xabs into xbase. How many units are required?

5]

Write a synthesisable architecture for sinegen. You may assume that an implementation for entity

' sine_lookup is given, and that m, n are chosen such that all numeric vectors in sinegen may be

represented by VHDL integers without overflow. Implement the numbers ; as an array of vectors, each
of length n+m. Your solution may use functions from the package utils, described in the lectures.

[10]

ENTITY sinegen IS
GENERIC(n : INTEGER := 8;
m : INTEGER := 8
)i
PORT(x : IN STD_LOGIC_VECTOR(m+n—1 DOWNTO 0);
y : OUT STD_LOGIC_VECTOR(m+1 DOWNTO 0));
END sinegen;

ENTITY sine_lookup IS
GENERIC(m: integer):
PORT (x: std logic_vector(m+2 DOWNTO O0);
y: OUT std logic_vector(m+1 DOWNTO 0)
)i
END sine_ lookup;
Figure 1.1

E3.06/ISE3.5/AM2 Page 2 of 9

2.

b)

sinegen

m+2
X abs xabs reduce xbase sine l_ N Y
—lP —A P L P v m+2
m+n m+n m+3 lookup © 5. o
X (m+n-1)
Figure 1.2

This question requires you to write a testbench for the entity sinegen defined in question 1.

You are given a VHDL package maths in library mathlib containing functions:
IMPURE FUNCTION random{ l: integer; h: integer) RETURN integer;

FUNCTION sin{ xXx : real) RETURN real;

The function random, when called, returns a new pseudo-random integer in the range 1 to h inclusive
(1 <h). The function sin returns the sine of its parameter x, which specifies an angle in radians.

Why is the function random declared IMPURE?
(2]

Write a testbench entity for sinegen that has generic testnum, and performs testnum tests with
pseudo-random input stimulus. The parameters n, m should also be generic parameters of your
testbench, with default values of 20 and 8 respectively. Each test should check that the output is within
2™ of the value computed by the sin function.

[12]
The entity sine_lookup in Figure 1.1 is implemented as a lookup table. Discuss the relative merits

of pseudo-random and exhaustive testing of sinegen, assuming that each separate test takes 1ms to
execute.

[6]

E3.06/ISE3.5/AM2 Page 3 of 9

b)

Figure 3.1 shows a critical path from X' to 7 in a circuit. Each of the blocks F is defined by: B = P.Q +
P.4 + Q.4. By applying controllability factoring at point Y, derive an equivalent circuit with reduced
critical path length. What is your control function C?

(10]

The VHDL fragment in Figure 3.2 defines y as a Boolean function of x(i), where x has type
std_logic_vector(2 downto 0). Write a truth table for y, and compute two ROBDD:s for y

using variable orders: x (0) ,x (1) ,x(2),andx(2),x(1),x(0) respectively.

(10

P1 Q1 P2 Q2 P3 Q3 - P4 Q4 P5 Q5 P6 Q6

| | | | | |
X P Q P Q P Q _l_ P Q P Q P Q Z
—A F B[]A F B[|A F B A F B A F B[A F B[
Figure 3.1
PROCESS (%)
BEGIN
IF UNSIGNED(x) > 2 THEN
y <= 11
ELSE
y <= '0';
END IF:

END PROCESS:?

Figure 3.2

E3.06/ISE3.5/AM2 Page 4 of 9

b)

Figure 4.1 shows the entity mult16_16 of a custom VLSI 16*16 bit unsigned multiplier. In order to
use this in a synchronous circuit it is proposed to implement a positive edge triggered clocked entity
mult32 32, as in Figure 4.1. The /O timing for mult32_32 is shown in Figure 4.2. The inputs a,b
are stable shortly after the rising edge of c1k. The output y will be valid either 2, or 3 cycles after the
corresponding inputs a,b. The output ready will be '1' during any clock cycle in which new inputs
may be presented. The output y will be valid 2 or 3 cycles after a, b according to whether ready is'l’
or '0' during the cycle after that in which a, b is presented. The inputs a, b are don't care for the 2
cycle of a 3 cycle operation. The reset input provides a synchronous reset.

Mult32_ 32 uses threemult16_16 units to implement 32*32 bit multiplication with 32 bit result. If
al,ah and bl,bh are the unsigned low and high 16 bit words of inputs a & b respectively, output y is
calculated as:

y = floor(2"®(al*bh+bl*ah)+ ah*bh)

The multiplication delay of mult32_32 is determined by that of each component multl16_16 unit,
which has a propagation delay dependent only on the value of one of its inputs: m. If m < 2° the
multl6 16 delay is under 1 clock cycle, otherwise it is between 1 and 2 clock cycles. You may
assume that the flip-flop setup times, and all other combinational delays, are negligible, so that the
mult 16 16 delay determines the required number of clock cycles for each multiplication. Data
inputs and outputs of mult32_32 are registered, so providing the minimum 2 cycle delay from input
to output. There are no other clocked registers in the datapath of mult32_32.

Figure 4.3 shows the state diagram of an FSM that will generate the required timing, from an input c.
The signal ¢ is a function of a,b and equal to '1' when the corresponding operation must take 3 cycles.
Rewrite the state diagram including ready as an output.

(51

Sketch an implementation of the datapath of mult32_32, implemented so as to minimise delay for a,
b < 2**. What is ¢ as a function of a,b?
(51
Assuming that mult16 16 is synthesisable, implement in VHDL a synthesisable architecture for
mult32_ 32.
[10]

E3.06/ISE3.5/AM2 Page 5 of 9

ENTITY mult16_l6 IS
PORT (
m : IN STD_LOGIC_VECTOR(15 DOWNTO 0):;
n : IN STD_LOGIC_VECTOR(lS DOWNTO 0);
p : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)
}i
END multl6_16;

ENTITY mult32_32 IS

PORT(clk : IN STD_LOGIC;
reset : IN STD_LOGIC;
a : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
b : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
y : OUT STD_LOGIC_VECTOR(31 DOWNTO 0):

ready : OUT STD_LOGIC;
}i
END mult32_32;
Figure 4.1

clk

o Vom Voom WG 1

S |

y X x ><A1*B1 Mﬂ*mﬁs*ss

Figure 4.2

(not resef) and ¢

Figure 4.3

E3.06/ISE3.5/AM2 Page 6 of 9

b)

b)

Figure 5.1. on page 8 contains a procedure read_cycle that communicates with process
mem_driver_ procC via shared variables mem_ request_cycle, mem data, mem_address,
and signal mem_ack.

In VHDL both signals and shared variables can be used for inter-process communication. Why in the
code of Figure 5.1 on page 8 is mem_ack required to be a signal, whereas mem
must be a shared variable? Discuss whether mem_data, mem_address could be signals in the cases:

(i) read_cycleis called in a single process.
(ii) read_cycle is called in multiple processes.

[10]

Write a VHDL procedure:
delay by clocks_and deltas(SIGNAL clk: IN std_logic;

m: in INTEGER; n: IN INTEGER);
that when called will wait until m 0->1 transitions of clk have occurred, then wait a further n
simulation deltas, then return. Your procedure should work correctly for all non-negative values of m
and n.

[10]

Figure 5.1 on page 8 gives VHDL source for an entity test mem driver with a behavioural
architecture, and a package comms containing procedure read_cycle. The test mem driver
entity has a positive edge active clock clk, and interfaces to a RAM through address and read data
busses, as illustrated in Figure 6.1.

Initially mem_request_cycle is false. Draw the waveforms of all signals and shared variables used
intest_mem driver, until the final (indefinite) wait statement in process pl is executed. You must
indicate precise timing of all signal and shared variable transitions, including simulation deltas where
relevant.

(15)

Tt is intended that a call to read_cycle will initiate a 1 clk cycle long read of the RAM, at the
address specified by the value of addr, after which the procedure will return. During what time
window after a clock edge must read_cycle be called for this behaviour to result?

[5]

test_ mem_driver

mem_address mem driver_proc real_mem_address
..............._.................’ — 4’
mem_data
<+ o "'1_” real_mem_data
mem_request_cycle :
4__......_..__.,_......
mem_ack
—

Figure 6.1

E3.06/ISE3.5/AM2 Page7 of 9

e, request—<g

ENTITY test mem driver IS

PORT (real mem address
real mem data

)i
END test_mem driver;

: OUT INTEGER;
. IN STD_LOGIC_VECTOR(7 DOWNTO

ARCHITECTURE behav OF test mem driver IS
SIGNAL clk : STD_LOGIC;

SIGNAL mem_ack
BEGIN

clkgen : PROCESS
BEGIN
clk <= '0';
WAIT FOR 50 ns:
clk <= '1';
WAIT FOR 50 ns;

END PROCESS clkgen;

BOOLERAN;

mem driver proc : PROCESS

BEGIN

FOR i IN 1 TO 10 LOOP

WAIT FOR O ns:

END LOOP;

IF mem request_cycle THEN
real mem address <= mem_address;
WAIT UNTIL clk'EVENT AND clk = '1';

mem_data := real_mem data;
mem_ack <= true;
mem_request_cycle := false;
WAIT FOR O ns;
mem_ack <= false;

ELSE

real mem address <= 0;
WAIT UNTIL clk'EVENT AND clk = '1';

WAIT FOR 0 ns;

mem_data
END IF;

:= (OTHERS => 'X")

~e

END PROCESS mem driver proci

pl : PROCESS
VARIABLE a, b :
BEGIN

STD_LOGIC_VECTOR(7 DOWNTO 0);

WAIT UNTIL clk'EVENT AND clk = '1';

WAIT FOR O ns;
WAIT FOR 0 ns;

read_cycle(1, a, mem_ack, clk):

read_cycle(2, b,

WAIT;
END PROCESS pl;

END behav;

mem:ack, clk);

Figure 5.1 (continued on next page)

E3.06/ISE3.5/AM2 Page 8 of 9

~e

PACKAGE comms IS

SHARED VARIABLE mem_request_cycle : BOOLEAN := false;
SHARED VARIABLE mem address : INTEGER;
SHARED VARIABLE mem data : STD_LOGIC_VECTOR(7 DOWNTO 0);

PROCEDURE read_cycle(
addr : IN INTEGER:; _
VARIABLE data : OUT STD LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL ack : IN BOOLEAN;
SIGNAL clk : IN STD_LOGIC);

END PACKAGE comms;
PACKAGE BODY comms IS

PROCEDURE read_cycle(
addr : IN INTEGER;
VARIABLE data : OUT STD LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL ack : IN BOOLEAN;
SIGNAL cik : IN STD_LOGIC) IS
BEGIN
WAIT FOR O ns;
WAIT FOR O ns;
WHILE mem request_cycle = true LOOP
WAIT UNTIL clk'EVENT AND clk = '1';
WAIT FOR O ns;
WAIT FCR 0 ns;
END LOOP;
mem_request_cycle := true;
mem_address addr;
WAIT UNTIL ack;
data
END read cycle;

mem_data;

END PACKAGE BODY comms;

Figure 5.1 (continued from previous page)

E3.06/ISE3.5/AM2 Page 9 of 9

ANSWERS - VHDL & Logic Synthesis

Question 1.

a)

C7.ve¢
oo

If the input is negative, it is negated and the output negated to compensate. The reduce stage subtracts a
multiple of 2pi and hence does not alter answer. Finally the output of reduce is in the correct range for

sine_lookup to return the correct answer.

xabs is always positive, its max value (1.000) uses what was the sign bit in x, hence length xabs also
n+m. xbase ranges unsigned up to 2r => 3 bits to left of point, m+3 bits overall. Finally y must range

from -1 to 1, hence m+2 bits.

5]

b) If the then part is taken, u;, is < 2"'.2pi. Otherwise, the subtraction forces ui; to be in the required
range. xabs has max value 2", Hence ceiling(n-1-log(2pi)) = n-3 stages are needed to reduce value to

max 2pi.

xabs | © Up-g = Up-s U, = Uy

ul = xbase
—>

151

¢) Using the definitions given in the architecture declaration section of Figure 1.2, write a synthesisable

architecture for sinegen.

E3.06/ISE3.5/AM2 ANSWERS Page 1

‘1T

/

LIBRARY ieee;

USE ieee.std logic 1164.ALL;
USE ieee.std logic_arith.ALL;
USE work.utils.ALL;

USE work.sine lookup;

ARCHITECTURE rtl OF sinegen IS
CONSTANT cnum : INTEGER := n-3;
CONSTANT pi: real := 3.1415926
TYPE x2 arr IS ARRAY (0 TO cnum-1) OF STD LOGIC VECTOR(x'RANGE};
SIGNAL x2 pre : X2 arr;
SIGNAL xabs : STD_LOGIC VECTOR(x'RANGE) ;
SIGNAL x2 : STD_L6GIC_VECTOR(m+2 DOWNTO O0);
SIGNAL x4 : STD LOGIC VECTOR(m+l DOWNTO O0);
BEGIN

stagel : PROCESS(x)
BEGIN
IF SIGNED(x) < O THEN
xabs <= -SIGNED(Xx);
ELSE
xabs <= x;
END IF;
END PROCESS stagel;

stage2 : PROCESS (x2 pre, xabs)
VARIABLE i : INTEGER;
VARIABLE tmp : STD_LOGIC_VECTOR(X'RANGE);
BEGIN
FOR i IN 0 TO cnum-1 LOOP
tmp := xabs;
IF i /= cnum-1 THEN
tmp := X2 pre(i+l);
END IF;
IF UNSIGNED({ tmp) > INTEGER(REAL(2** (i+m))*2.0*pi) THEN
x2 pre(i+l) <= UNSIGNED(tmp) -
INTEGER (REAL (2** (i4m)) *2.0*pi) ;
ELSE
x2 pre{i+l) <= tmp;
END IF;
END LOOP;

xbase <= x2 pre(0) (m+2 DOWNTO 0);
END PROCESS stage2;

E3.06/ISE3.5/AM2 ANSWERS Page 2

staged4: ENTITY sine lookup GENERIC MAP (m=>m)
PORT map (x=>xbase,y=>x4);

p_out: PROCESS(x,x4)

begin
IF x(x'left) = '1' THEN
y <= O-unsigned(x4);
else
y <= x4;
END IF;

END process p out;

END rtl;

[10]

E3.06/ISE3.5/AM2 ANSWERS Page 3

Question 2.

This question requires you to write a testbench for the entity sinegen defined in question 1.

a) Why is the function random declared IMPURE?

It must return a different value each time it is called, using a shared variable to store state. Therefore it
must be declared inpure.

121

b) Write a testbench entity for sinegen.

LIBRARY ieee;
LIBRARY mathlib

USE ieee.std logic_1164;
USE ieee.std _logic_arith;
USE mathlib.maths;

ENTITY sinetest IS
GENERIC(testnum : INTEGER;
m : INTEGER := 20;
n : INTEGER :=
)i
END sinetest;

i
=]

ARCHITECTURE behav OF sinetest IS
SIGNAL x i: std_logic_vector(m+n-1 downto 0);
SIGNAL y i: std logic_ vector(m+l downto 0);
BEGIN

dut: ENTITY sinegen(x_i, y_i};

dotest: PROCESS
BEGIN
FOR 1 = 1 TO testnum LOOP
x_1i <= random(0, 2**(n+m)-1);
WAIT FOR 100 ns;
y_real := REAL(conv_integer (SIGNED(y_i)))/REAL(2**m);
x_real := REAL(conv_integer (SIGNED(x_i)))/REAL(2**m);
ASSERT ABS(y_real - sin(x_real)) < (1.0 / REAL(2**m))
REPORT "Bad output : x = " & REAL'IMAGE(x real) & ", y = " & REAL'IMAGE(y_real);
SEVERITY warning;
END LOOP;
REPORT "Test finished";
WAIT;
END PROCESS dotest;

end;
[12]

¢) Discuss the relative merits of pseudo-random and exhaustive testing of sinegen, assuming that each
separate test takes 1ms to execute.

For exhaustive testing execution time is 2""™ ms. This is feasible for say ntm < 25. Above this size the
test time becomes unpleasantly large. Pseudo-random testing will provide a faster test, of reasonably
good quality. If sine_lookup is based on a ROM lookup every location should be tested if possible =>
exhaustive test of all values < pi/2. Corner cases should be added: x= max negative input, max positive
input, x=pi/2 (sin is max) x=-pi/2 (sin is min).

[6]

E3.06/ISE3.5/AM2 ANSWERS Page 4

Question 3

a) By applying controllability factoring at point Y, derive an equivalent circuit with reduced critical path
length. What is your control function C?

C= (P4 xor Q4).(P5 xor Q5).(P6 xor Q6).

Pl (|)1 P2 Q2 P3 Q3 v
| || ||
X 5) P Q] [? q] MUX
A g B]JA F B A F B 1
z
P4 Q4 P5 Q5 P6 Q6
[| | | | |
P P P
0 —A g B[™A F B[]A FQB 0
a1
P5 =1 L
Qs
P6 =1 L
Q6

[10]

E3.06/ISE3.5/AM2 ANSWERS Page 5

b) Write a truth table for y, and compute two ROBDDs for y using variable orders: x (0) ,x (1) ,x(2),
and x(2) ,x (1) ,x (0) respectively.

X2 | X1 | X0 Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
Order: x(2),x(1),x(0) Order x(0), x(1), x(2)

=
-

4:®®

o,
Do

»

|

\-
po
e

[10]

E3.06/ISE3.5/AM2 ANSWERS Page 6

Question 4

a)
Output: ready (default 0).

(not reset) and ¢

—>
44—

b)

clk
\V4 V
ah
a — M mull6 16
b | bh ,
bh y
m +
mull6_16
al T
n
top 16 bits
ah m ¢
mull6_16
bl n

¢ will be 0 iffa <2** and b < 2.

(5]

E3.06/ISE3.5/AM2 ANSWERS Page 7

¢) Implement in VHDL the architecture of mult32 32.

ARCHITECTURE
SIGNAL
SIGNAL

rtl OF mult32 32 IS
pl, p2, p3
a_big, b _big, ready_ int
SIGNAL al, ah, bl, bh
SIGNAL fsmwait
SIGNAL c
BEGIN
in reg PROCESS
BEGIN
WAIT UNTIL clk'EVENT AND clk =
IF fsm wait = '0' THEN
al <= a (15 DOWNTO 0);
ah <= a DOWNTO 16);
bl <= DOWNTO O0);
bh <= DOWNTO 15);
END IF;
END PROCESS in_reg;

(31
b (15
b (31

c <= a big or b_big;
ml

m2
m3

ENTITY mullé_le(ah,
ENTITY mullé_ 1o (bh,
ENTITY mullé_16(ah,

bl,
al,
bh,
out reg PROCESS
BEGIN

y <= p3 + (pl(31 DOWNTO 16)+pZ2
END PROCESS our reg;
compare PROCESS (a, b)
BEGIN

a big <=

b _big <=
END PROCESS

UNSIGNED(a (31 DOWNTO
UNSIGNED (b (31 DOWNTO
compare;
fsm : PROCESS
BEGIN

WAIT UNTIL clk'EVENT AND clk

IF reset = '1' THEN

fsmwait <= '0';
ELSE

STD LOGIC_VECTOR (31 DOWNTO 0);
STD LOGIC;

STD LOGIC_VECTOR(15 DOWNTO 0);
STD LOGIC; --FSM state bit
STD _LOGIC; --wait condition

lll’.

(31 DOWNTO 16));

24)) /
/

0;
24)) 0

.
I

lll’.

fsmwait <= ¢ AND NOT fsmwait);

END IF;
END PROCESS fsm;

ready <= NOT fsmwait;

END ARCHITECTURE rtl;

E3.06/ISE3.5/AM2 ANSWERS Page 8

[10]

b)

Question 5.

mem_ack is waited on by read cycle, hence must be signal. mem_cycle request is driven in both
read_cycle and mem_driver_proc, hence must be shared variable. mem_data could be a signal, the extra
1 delta delay would not matter since mem_ack has similar delay. mem address could be a signal,
although to be safe at all times a 1 delta delay would need to be added to mem_driver_proc, between
checking mem_cycle request and reading mem_address. However if read cycle were called from
multiple processes this would not be possible.

[10]
PROCEDURE delay by clocks and deltas(SIGNAL clk : IN STD_LOGIC;
m : IN INTEGER;
n : IN INTEGER) IS
BEGIN
FOR i IN 1 TO n LOOP
WAIT UNTIL clk'EVENT AND clk = 'l1' AND clk'LAST VALUE = '0';
END LOOP;
FOR 1 IN 1 TO m LOOP
WAIT FOR 0 ns;
END LOOP;
END PROCEDURE delay by clocks and_deltas:;
[10]

E3.06/ISE3.5/AM2 ANSWERS Page 9

Question 6.

a) Draw the waveforms of all signals and shared variables used in test_mem_driver, until the final

b)

(indefinite) wait statement in process pl is executed. You must indicate precise timing of all signal and
shared variable transitions, including delta delays where relevant.

D = number of deltas from clock edge. All times are referenced from clock rising edge, at 50, 150, 250.
NB clock edge is actually at delta 1 in this architecture, so add 1 for true deltas. mem_data changes on
falling edge of mem_request cycle. mem_addr changes 1 delta after rising edge of mem_request _cycle.

D4 D0 D3 DO

mem_request_cycle

D1 D2

mem_ack

D12 D12 D11

real_mem_address

[15]

During what time window after a clock edge will read_cycle have this behaviour?

mem_request_cycle is tested 11delta after the clock edge by mem driver proc. For it to be
certainly read a6 g4, it must be set 10 delta after clock => read_cycle executed 8 delta after clock edge.

mem_request cycle is tested by read _cycle 2 delta after the call, and reset by mem_driver_proc on the
clock edge. So window is clock edge to clock edge + 8 delta.

5]

E3.06/ISE3.5/AM2 ANSWERS Page 10

