Paper Number(s): E3.06
AM?2
ISE3.5

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2001

MSc and EEE/ISE PART III/IV: M.Eng., B.Eng. and ACGI

VHDL AND LOGIC SYNTHESIS
Friday, 11 May 10:00 am

There are SIX questions on this paper.

Answer FOUR questions.

Time allowed: 3:00 hours

Corrected Copy

/.
Examiners: Clarke,T.J.W. and Cheung,P.Y K. N

Special instructiong for invigilators:

Information for candidates-

1of8§

Students may bring any written
Or printed aids jnto this eXxamination

Students may bring any written
Or printed aids jnto this €Xamination,

b)

Figure la shows a nardware block serial_rx that performs serial to parallel conversion. The block
receives a sequence Of bytes on serial bus serial_in, serial_en, and outputs bytes on databus. The block
is controlled by clk, and reset which is active high and synchronous. All serial_rx signals are
synchronous with the rising edge of clk: inputs are assumed to change just after this edge. The main sub-
blocks of serial _rx are shown in Figure la. Except for the output data path, interconnections are
omitted.

The required timing is illustrated in Figure 1 b. Bach byte is received in 8 contiguous cycles with
serial_en high. The mumber of cycles with serial_en low between successive bytes is 1 or more. The
serial data bits are received most significant bit first.

Two cycles after the last bit is received datardy is pulsed high for 1 cycle, as shown in Figure 1b. The
parallel data is output on databus when datardy is high: at all other times databus is high impedance. If

the length of the serial_en high pulse is not equal to 8 cycles the received data 1s ignored and datardy
will remain low.

Write an RTL description of serial_rx, defining the necessary processes, signals driven in each process,
and finite state machine transitions.

[10 marks}

Write a VHDL entity and synthesisable architecture that implements serial_rx.

[10 marks]

clk

reset

serial_rx databus

shift register (8 bit)

Figure la

serial_in datardy

serial_en

clk W
serial_en / {stbyte \ / 2nd byte

serial_in ﬂﬂﬂﬂﬂﬂﬂﬂ_ﬂﬂ
datardy /’//—L/

databus /@'——_—”

Figure 1b

20of 8

b)

d)

[6nuwkﬂ

SIGNAL pclk : 1y STD_LOGIC;
interlaced : IN BOOLEAN;

h size : IN INTEGER;
- V_size : IN INTEGER;
SIGNAL pi ! oUT Pix_inp t;

SIGNAL Vert blank: oyg sta;logic;

[6 marks}

30f§

PACKAGE pixel pack IS

TYPE pixel t IS ('Y', 'U', 'V'); -- pixel type
TYPE pix inp t IS
RECORD
data : STD LOGIC VECTOR(7 DOWNTO 0);

avail y : STD LOGIC;

avail u : STD LOGIC;

avail v : STD LOGIC;

h~ ¢ STD _LOGIC VECTOR (9 DOWNTO Q)7
END RECORD;

IMPURE FUNCTION data_source(h : IN INTEGER; p : IN pixel t)
RETURN STD LOGIC_VECTOR; .

END PACKAGE;

PACKAGE BODY pixel pack IS

PROCEDURE emit pixel/(

SIGNAL pclk : IN STD LOGIC; -- clock
SIGNAL pi : OUT pix inp t; -- driven output
h : IN INTEGER; —— horiz coord
o) : IN pixel t -—- pixel type (Y, U or V)
) IS
BEGIN
pi.data <= data_source(h, p);
pi.avail y <= '0'; pi.avail u <= '0'; pi.avail v <= 'Q';
CASE p IS

WHEN 'Y' => pi.avail y <= '1';
WHEN 'U' => pi.avail u <= '1';
WHEN 'V' => pi.avail v <= '1';

END CASE; .

pi.h <= conv_std logic wvector(h, 10);

WAIT UNTIL pclk'EVENT AND pclk = '1';

pi.avail_y <= '0'; pi.avail u <= '0'; pi.avail v <= '0';

END PROCEDURE;

PROCEDURE emit_ line(
SIGNAL pclk : IN STD LOGIC;

SIGNAL pi : OUT pix inp t;

h size : IN INTEGER

) IS

VARIABLE y hpos, uv_hpos : INTEGER;
BEGIN

y hpos := 0;

uv hpos := 0;

WHILE y _hpos < h_size LOOP
emit pixel(pclk, pi, y hpos, 'Y');
IF y hpos MOD 2 = 0 THEN
emit_pixel(pclk, pi, uv_hpos, 'V');
ELSE
emit_pixel(pclk, pi, uv_hpos, 'U');
END IF;
y _hpos := y hpos+l;
IF y hpos MOD 2 = 0 THEN
uv_hpos := uv_hpos + 1;
END IF; -
END LOOP:;
END PROCEDURE;

END PACKAGE BODY;

Figure 2

4 of 8

3.
a)

b)

d)

b)

The entity logic_function in Figure 3 implements synthesisable logic function,

Under what values of ¢ will the OTHERS case be Cxecuted, and why is the value assigned to ¥ in this
¢ase appropriate? What is the affect of this case op the synthesis of the architecture?

[4 marks]

function of ¢ a(2), a(l) and a(0). Derive the reduced ordered binary decision diagram for y with
variable order: (e, a(0), a(l), a(2)).

[10 marks]
Design a logic implementation of a single BDD node using only 2-input NAND 8ates. Use this and your
answer from part a) to derive a 2-input NAND gate circuit diagram that implements the logic function .
Simplify your answer by Propagating constapt values, identifying gates with identica] inputs, and

removing two inversiong in series. Use only 2-input NAND gates, and do NOT yge any other logjc
optimisations,

[10 marksj

5of8§

ENTITY logic_ function IS
PORT (
a: IN STD LOGIC VECTOR (2 DOWNTO 0);

c: IN STD LOGIC;
y: OUT STD LOGIC
)i
END logic_ function;

ARCHITECTURE rtl OF logic function IS
BEGIN -
logic : PROCESS (a, c)
BEGIN
y <= '0"';
CASE c¢ IS
WHEN '1° =>
IF unsigned(a) > unsigned’' ("011") THEN
% <= ,‘ll;
END if; "’
WHEN '0’ => .
IF unsigned(a) = unsigned'("011") THEN
y <=i\! I/‘;;
END IF;
WHEN OTHERS =>
vy <= 'X';
END CASE;
END PROCESS logic;
END rtl;

Figure 3

6 of 8

b)

b)

The diagram Figure 5a shows a structural implementation of a combinatorial 8X8 modified Booth
parallel signed multiplier, using entities booth_adder and booth_mux, defined in Figure 5b. The output
g is the result of multiplying x and y. All numbers are two's complement signed. The block "-1"
implements two's complement negation. Where necessary bit numbers are indicated in the format a:b
where g is the most significant bit.

Write a VHDL entity booth_multiplier and an architecture corresponding to Figure 5a using the entities
defined in Figure 5b.

{14 marks]
A DSP system uses an array of 16 booth_multiply units to multiply two 16 element 8-bit arrays, vx and

vy, and drive a 16 element 16-bit array, vg. Write appropriate type and signal definitions to represent
these arrays, and a VHDL fragment using a GENERATE loop to implement the multiplications.

[6 marks]

The entity booth_adder defined in Figure 5b (see opposite page) performs the logic function specified
in Figure 4 (below). :

. Write a synthesisable architecture for this entity.

[6 marks]

Write a testbench for booth_adder that will read a file each line of which specifies inputs x, mx, ¢ and si,
and the corresponding output so. The testbench must check that booth adder generates the correct
output for each set of inputs, and print an error message for each error that is found.

[8 marks]

Discuss the merits of exhaustive and random verification techniques as applied to entity booth adder.
You may assume that a testbench as specified in part b) above is to be used, that each distinct set of
input values takes 1ms to read and test, and that all tests are conducted with generic #=8. Devise an
effective verification strategy, evaluating its likely performance, and making no assumptions about the
integrity of the arithmetic operations used by booth_adder. How would your strategy change if #n=162

[6 marks]

c2) | c1) | c0) 50
0 0 0 si
0 0 i Si+x
0 1 0 si+x
0 11 1 si+2x
1 0 0 Si+ 2mx
1 0 1 Si+mx
1 1 0 S1+mx
1 1 1 si

Figure 4

7of8

q(15:0)

booth multiplier
"z
X(7:0) | g 9 9 S
ya - Ny 10
> -1 me§ SO
921 .
8 Sl &
X o ~
S C 15:6
9 S
mx = 10
| SO 1:0 5:4
8 92| 8§
X & —si N 16
S Q
9 S o o
-
mle S0 C
8 g* 921 .
X 3 S & 1:0 3:2
= 10 ~
IS m o
2 mx § 1:0 1:0
C
y(7:0) | g 1:0 3:1 53 7:5
>
Figure Sa
ENTITY booth_adder IS
GENERIC (
n INTEGER
) ;
PORT (
x IN SIGNED(n-1 DOWNTO 0);
mx IN SIGNED(n DOWNTO 0);
si IN SIGNED(n-1 DOWNTO 0);
so OUT SIGNED (n+l DOWNTO 0) ;
IN STD LOGIC VECTOR (2 DOWNTO 0)

END booth adder;

ENTITY booth mux IS
PORT (
c IN STD_LOGIC_VECTOR(1l DOWNTO 0);
X IN STD_LOGIC VECTOR(7 DOWNTO 0);
mx IN STD_LOGIC_VECTOR(8 DOWNTO 0);
OUT STD_LOGIC VECTOR(9 DOWNTO 0)

END booth mux;
Figure 5b

P3

8 of 8 [END]

Confidential VHDL & Logic Synthesis
2001 Examination Solutions

Solution to Question 1

This question tests whether the students can design an RTL hardware description, and express it in correct
synthesisable VHDL.

The RTL description should specify all processes providing:

e Is the process combinatorial or sequential?

e list of signals driven.

e pseudocode specifying the values driven signals are driven to.

The code below shows one answer.
LIBRARY IEEE;

USE IEEE.std logic 1164.ALL;
USE IEEE.std logic arith.ALL;

ENTITY serial rx IS

PORT (
reset : IN STD LOGIC;
clk : IN STD _LOGIC;

—-— input bus
serial in : IN STD LOGIC;
serial en : IN STD LOGIC;

-- output bus
databus : OUT STD LOGIC VECTOR(7 DOWNTO O);
datardy : OUT STD _LOGIC

)i
END serial rx;

ARCHITECTURE rtl OF serial rx IS

—-—fsm type
TYPE fsmstate IS (
walting, receiving, dataready

) :

-— fsm signals
SIGNAL state, next state : fsmstate;

SIGNAL si_count : STD LOGIC VECTOR(3 DOWNTO 0);
-— shift register to store received data
SIGNAL dsi : STD LOGIC VECTOR(7 DOWNTO 0);

BEGIN

-—- main rx shift register

sireg : PROCESS

BEGIN
-—unusually, don't need to initialise this register
WAIT UNTIL clk'EVENT AND clk = '1';
IF serial en = '1' THEN

dsi <= dsi(6 DOWNTO 0) & serial in; (7 S (.

END IE';

Confidential

VHDL & Logic Synthesis

2001 Examination Solutions

END PROCESS sireqg;

-—- bit count register
sicount PROCESS
BEGIN
WAIT UNTIL clk'EVENT AND clk =
IF reset = '1l' THEN
si count <= (OTHERS =>
ELSIF serial en = '1' THEN

lll;

0');

-—stop count wrap-around by holding count at

IF si count (3 DOWNTO 2) /= "11" THEN
si _count <= UNSIGNED(si count)-+1;

END IF;
ELSE
si_count <= (OTHERS => '07);
END IF;
END PRCCESS sicount;
-— FSM state register
fsm PROCESS
BEGIN
WAIT UNTIL clk'EVENT AND clk = '1"';
IF reset = '1' THEN
state <= waiting;
ELSE
state <= next state;
END IF;

END PROCESS fsm;

-- FSM transitions and outputs

fsmtrans PROCESS (state, serial en, si count, dsi)
BEGIN

next state <= state;

datardy <= '0'; databus <= (OTHERS=>'Z");

CASE state IS

WHEN waiting =>
IF serial en = '1' THEN
next state <= receiving;
END IF;

WHEN receiving =>
IF serial en = '0' THEN
IF si_count = conv_std logic vector (8,
next state <= dataready;
END IF;
next state <=
END TIF;

waiting;

WHEN dataready =>
datardy <= '1';
next state <= waiting;
databus <= dsi;
END CASE;
END PROCESS;
END rtl;

12

4) THEN

VHDL & Logic Synthesis

Confidential
2001 Examination Solutions

Solution to Question 2

This question tests the student's understanding of procedural abstraction in VHDL testbenches.

a)

pclk oo L L
pi.inp_avail_y SN N ./ A\

pi.inp_avail_v I\
pi.inp_avail_u S\

i 8

plp:r:r;])Ed;a tint (0 X0 X0 X1 X1 X2 X1 X3

b)
pelk provides timing information (CEVENT attribute) and therefore must be a signal of IN mode. The result

of calling emit line is to drive pi with a time-varying waveform, hence it must be a signal of OUT mode.

¢
§£OCEDURE emit vert blank(
n - : IN INTEGER;
SIGNAL pclk : IN STD LOGIC;
SIGNAL vert blank : OUT STD LOGIC
) IS
BEGIN

vert blank <= '1';
FOR 1 IN 1 TO n LOOP
WAIT UNTIL pclk'EVENT AND pclk = '17";
END LOOP;
vert blank <= '0';
END PROCEDURE;?

Confidential VHDL & Logic Synthesis
2001 Examination Solutions

d)

PROCEDURE emit frame (
SIGNAL pclk : IN STD LOGIC;
interlaced : IN BOOLEAN;
h size : IN INTEGER;
v_size : IN INTEGER;
SIGNAL pi : OUT pix inp t;
SIGNAL vert blank : OUT STD LOGIC;
SIGNAL v : OUT STD LOGIC VECTOR(9 DOWNTO 0)
) IS
VARIABLE vpos : INTEGER;

BEGIN

vpos := 0;

WHILE vpos < v_size LOOP
vertical line number := vpos;
emit line{ pclk, pi, h size);
IF interlaced THEN

vpos := Vvpos + 2;
ELSE
vpos := vpos + 1;
END TIF;
END LOOP;

emit vert blank(10, pclk, vert blank);

IF interlaced THEN
emit vert blank(10, pclk, vert blank);

vpos := 1;

WHILE vpos < v_size LOOP
vertical line number := vpos;
emit line(pclk, pi, h size);
VPpOs := Vpos+2Z;

END LOOP;

emit vert blank(10, pclk, vert blank);

END IF;

emit vert blank(10, pclk, vert blank);

END PROCEDURE emit frame;

)

Confidential VHDL & Logic Synthesis
2001 Examination Solutions

Solution to Question 3

a)

The OTHERS case will be executed if c="X', 'U", ', 'H','L",'W','Z" i.e. any value in std_logic other than 0/
or 'l'. Assigning 'X' (undefined) to y in these cases is reasonable since 'weak' logic values ("H' and 'L") are
not normally used and therefore y need only have a well defined value when inputs to the logic function are
'0' or 'I'. Synthesis ignores all input values except '0' and '1". Therefore this case is irrelevant to synthesis.
NB - this case is required by the VHDL compiler, which does not allow incomplete case statements.

b)

This process has sensitivity list (a,c) and no waits. Hence the statements in it execute in 0 time, after

a) the start of simulation

b) any change in the value of ¢ or c.

The statements in the process assign a value to y under all possible inputs. Note that the first assignment,
y<='0", has no effect because it is overridden by a later assignment in all cases. The value of y changes 1
simulation delta after the change in @ or ¢ that initiated the process, hence the delay from a or cto y is 1
delta.

After execution of the process reaches the end of the process body execution is suspended until the next
transition of a or c.

¢)

unsigned() implements type conversion from (in this case) std_logic_vector to unsigned. The latter type is
equipped with unsigned arithmetic operations by library std_logic_arith that allow unsigned numeric
comparison of unsigned vectors. This function is necessary to allow std_logic_arith arithmetic on a.

unsigned'() selects the type of the literal constant to be unsigned. This type is ambiguous, since the literal
could be either std _logic vector, unsigned, or signed. Without this operation the VHDL compiler will not
be able to resolve the type ambiguity and fail, since the > and >= operations are defined on multiple types.

Confidential VHDIL & Logic Synthesis
2001 Examination Solutions

d)

ENTITY new logic function IS

GENERIC (
v o INTEGER
)
PORT (
a : STD_LOGIC VECTOR;
c IN STD LOGIC;
y : OUT STD LOGIC
)

’

END new logic function;

ARCHITECTURE rtl OF new logic function IS
CONSTANT m: UNSIGNED(a'range) := conv_unsigned(v, a'length);
BEGIN
logic : PROCESS(a, c¢)
BEGIN
v <= '0"';
CASE ¢ IS
WHEN '1° =>
IF UNSIGNED(a) > m THEN
y <= '1";
END IF;
WHEN '0° =>
IF UNSIGNED(a) >= m THEN
y <= '1";
END IF;
WHEN OTHERS =>
N <= 'X';
END CASE;
END PROCESS logic;
END rtl;

e)

Synthesis

The sensitivity list will be automatically completed, with a warning message, hence no change in the
synthesised code.

Simulation.

The output will be updated when a changes, but not ¢. This corresponds to unrealisable hardware in which
any edge on a updates a latched value of ¢. The output is then derived from the latched ¢ and a. Thus pre-

synthesis simulation is different from post-synthesis simulation.
= / LLC/ g

Confidential

Solution to Question 4
This question tests whether the students understand how

combinatorial logic is implemented, simulated, and
synthesised, in VADL.

a)

" denotes boolean negation

y=c¢ ¥ a; +c*(a; + a,*a)

b)

VHDL & Logic Synthesis
2001 Examination Solutions

Confidential VHDL & Logic Synthesis
2001 Examination Solutions

Solution to Question 5
This question tests whether the students are able to write structural VHDL descriptions.

a)

LIBRARY IEEE;
USE IEEE.Std_logiC_1164.ALL;
USE IEEE.std logic_arith.ALL;
USE work.ALL;

ENTITY booth multiplier IS

PORT (
x : IN STD LOGIC_VECTOR (7 DOWNTO 0); --signed
y : IN STD LOGIC_VECTOR(7 DOWNTO 0); --signed
g : OUT STD _LOGIC VECTOR (15 DOWNTO 0) --signed

)i
END booth multiplier;

ARCHITECTURE rtl OF multiplier IS

SIGNAL minus_x : SIGNED(8 DOWNTO O0);

(
SIGNAL sum0 : SIGNED(S DOWNTO 0);
SIGNAL suml : SIGNED(11 DOWNTO 2);
SIGNAL sum?2 : SIGNED (13 DOWNTO 4});
SIGNAL sum3 : SIGNED({1l5 DOWNTO 6);
BEGIN

minus_x <= -SIGNED(x(7) & x);

m0 : ENTITY booth_mux
PORT MAP(y(1 DOWNTO 0), x, STD LOGIC VECTOR (minus_ x),
STD_LOGIC VECTOR (sum0)) ;

b0 : ENTITY booth adder
GENERIC MAP(10)
PORT MAP(SIGNED(x), minus_x, sum0O, suml, y(3 DOWNTO 1));

bl : ENTITY booth adder
GENERIC MAP(8)

PORT MAP (SIGNED(x), minus_x, suml (1l DOWNTO 4), sum2, y(5 DOWNTO 3));

b2 : ENTITY booth adder
GENERIC MAP(8)

PORT MAP (SIGNED(x), minus_x, sum2(13 DOWNTO 6), sum3, y(7 DOWNTO 5));

q <= STD_LOGICMVECTOR(Sum3 & sum2(5 DOWNTO 4) & suml (3 DOWNTO 2)
sum0 (1 DOWNTO 0));

END rtl;

&

I C
0/

Confidential

VHDL & Logic Synthesis

2001 Examination Solutions

b)

ARCHITECTURE rtl OF mul array IS

TYPE array word8 IS ARRAY (0 TO 15) OF STD LOGIC VECTOR(7 DOWNTO 0);

TYPE array wordl6é IS ARRAY (array word8'RANGE) OF
STD_LOGICﬁVECTOR(15 DOWNTO 0) ;

SIGNAL vx, vy : array wordS8;
SIGNAL vqg : array wordlé6;
BEGIN
Gl : FOR i IN array word8'RANGE GENERATE
ml : ENTITY booth multiplier
PORT MAP(vx (i), vy(i), vag(i));
END GENERATE;

END rtl;

()k/\ﬁt

(U

10

Confidential VHDL & Logic Synthesis
2001 Examination Solutions

Solution to Question 6

Part a) of the question tests whether students can design arithmetic logic functions. Parts b) and c) test
whether the students can design VHDL testbenches with simple file /O, and whether they understand how
to verify hardware modules.

a) (entity given in question)

ENTITY booth adder IS

GENERIC (
n : INTEGER
)i
PORT (
X : IN SIGNED(n-1 DOWNTO 0); --signed
mx : IN SIGNED(n DOWNTO 0); ~-signed
si : IN SIGNED(n-1 DOWNTO 0); --signed
so : OUT SIGNED(n+l1 DOWNTO 0); --signed
C : IN STD_LOGIC_VECTOR(2 DOWNTO 0)

END booth adder;

ARCHITECTURE rtl QF booth adder IS
SIGNAL z : SIGNED(n+l DOWNTO 0);

BEGIN
PROCESS (X, mx, C)
BEGIN
CASE c IS
WHEN "00C™ | "1l11" =>
z <= (OTHERS => '0');
WHEN "001" | "010" =>
Z <= x(7) & (x(7) & x);
WHEN "101" | "110" =>
Z <= mx (8) & mx;
WHEN "011" =>
z <= x(7) & x & '0";
WHEN "100" =>
z <=mx & '0';
WHEN OTHERS => 7z <= (OTHERS => 'X");
END CASE;

END PROCESS;

PROCESS (sum_in, z)
BEGIN

so <= SIGNED(si) + SIGNED(z):;
END PROCESS;

END rti;

Confidential VHDL & Logic Synthesis
2001 Examination Solutions

b)

LIBRARY IEEE;

USE IEEE.std logic 1164.ALL;
USE IEEE.std logic_arith.ALL;
USE STD.textio.ALL;

ENTITY test booth adder IS
END test booth adder;

ARCHITECTURE beh OF test booth_adder IS

CONSTANT n : INTEGER := 8;

CONSTANT tdelay : TIME := 1 us;

FILE testdata : TEXT OPEN read mode IS "testfile";

SIGNAL x i : SIGNED(n-1 DOWNTO 0); -—--signed

SIGNAL mx_ i : SIGNED(n DOWNTO O0); --signed

SIGNAL si_i : SIGNED(n-1 DOWNTO 0); --signed

SIGNAL So_i : SIGNED(n+1 DOWNTO 0); --signed

SIGNAL c_ i : STD_LOGIC VECTOR (2 DOWNTO 0);
BEGIN

PROCESS

VARIABLE buf : LINE;

VARIABLE x, mx, si, so, c¢ : INTEGER;
VARIABLE line num: INTEGER;

BEGIN
line num := 0;
WHILE NOT endfile(testdata) LOOP
line num := line num+1;

readiine(testdata, buf);
read(buf, x):

read(buf, mx);
read(buf, si); .
read(buf, so);
read(buf, c);

x 1 <= conv_signed(x, n);

mx 1 <= conv_signed(mx, n+l);

si 1 <= conv_signed(si, n);

c i1 <= conv_std logic_vector(c, 3);

WALT FOR tdelay;
ASSERT conv_integer(so 1} = so
REPORT "verification error : line " & INTEGER'IMAGE (line num)
SEVERITY error;
END LOOP;
REPORT "Test Completed" SEVERITY note;
END PROCESS;

END beh;
ek
Y q(},ﬂ—r

12

Confidential VHDL & Logic Synthesis
2001 Examination Solutions

¢)

In all cases test data can be generated by writing a Golden C equivalent of this function and generating the
testbench stimulus files from this. Naive exhaustive testing of this block would require
2**(8+0+8+3)=2%*28 distinct tests. With an elapsed time of Ims/test this would take 256,000s ~ 80 hours.
This would give excellent verification, and be easy to implement. However the 80 hour test length is
inconvenient. Random testing, with all inputs randomised, would give reasonably good confidence very
quickly.

A clever strategy, with coverage as good as exhaustive testing, and also quick, is modifies exhaustive
testing. Notice that, if the block is working correctly, the output y depends on either mx or x but not both.
Therefore for each ¢ value we can exhaustively test on all inputs except the one that should be don't care.
That input can be given random values throughout the test sequence.

If n=16 the time becomes 2*24 (exhaustive) or 2**16 (modified exhaustive) worse. Even the modified
strategy now takes ~ 1 year. In this case the best solution is to run random tests, with all inputs randomised,
and measure test coverage for example by post-synthesis VHDL line coverage (pre-synthesis line coverage
would give little information about the arithmetic operations).

13

