
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2000
MSc EXAMINATIONS
EEE and ISE PART III, B. Eng., M.Eng. and ACGI

VHDL & LOGIC SYNTHESIS

Tuesday, May 2: 10.00 - 13.00

There are SIX questions. Answer FOUR.

All questions carry equal marks.

Special information for invigilators: Students may bring any written or printed aids into this
examination.

Information for candidates: None.

Examiners responsible: T. J. W. Clarke & P. Y. K. Cheung

 2 of 8

1. Figure 1a depicts the design of a crossover switch which can connect 8 output lines to 8 input
lines in any desired permutation. The switch is made up of an 8X8 matrix of switching
elements. Each element is described in VHDL by a procedure with header:
PROCEDURE switch_element(

SIGNAL a: std_logic_vector;
s: IN INTEGER;
en: BOOLEAN;
SIGNAL i: IN std_logic;
SIGNAL o: OUT std_logic
);

The element operates as a tri-state buffer. The output, o, is high impedance when the element is
off, and equal to its input, i, when the switch is on. The element is controlled by inputs a, s
and en. When the unsigned binary value of a is equal to the binary number on s, and en is
TRUE, the element will be on. Otherwise it will be off.
In the crossover switch there are 8 rows of elements, as shown in Figure 1. Each row connects
to a common output line, y(j). The matrix of elements has 8 control inputs c(0), ..., c(7),
each 3 bits wide. The a input of each element is connected to the appropriate control input. The
s input of each element is hardwired to a number equal to the index, j, of the corresponding
output line y(j). During normal operation, with enable = '1', the values on the control
inputs determine how signals pass from the x inputs to the y outputs. If enable='0' all
elements are switched off.

(a) Write the procedure switch_element.

[7 marks]

(b) Write a VHDL entity declaration crossover which describes Figure 1.

[6 marks]

(c) Using switch_element write a structural implementation of your crossover entity.

[7 marks]

Figure 1
x(0) x(7)

y(7)

y(0)

enable

c(0) c(7)

 3 of 8

Questions 2 and 3 relate to the VHDL entity register_file specified below.

ENTITY register_file IS
GENERIC(
number_of_registers: NATURAL;
word_size: NATURAL;
tsetup, thold, tdelay: TIME

);
PORT(
din: IN std_logic_vector(1 TO word_size);
dout: OUT std_logic_vector(1 TO word_size);
addr: IN INTEGER RANGE 0 to number_of_registers-1;
cs, write_en, clk, reset: IN std_logic

);
END register_file;

The register file has number_of_registers registers, each of word_size bits. Each
register is positive edge triggered, with clock clk. The timing of the register file is defined by
generics tsetup, thold and tdelay. Input write_en controls writing of data, and must
be stable for a time tsetup before and thold after the active clock edge. If write_en is
'1', the data on din is written into register addr. In this case it is an error for addr or din to
change between tsetup before, and thold after, the active clock edge. If write_en is '0'
no write occurs. The reset input operates asynchronously of clk, and forces all registers to
zero when it is '1'.

The register file output, dout, is independent of the clock. If cs is '1' the output will be driven
according to the value of register addr. If cs is '0' the output will be high impedance. The
output dout has a propagation delay of tdelay from addr, cs, or reset. When new data
is written into a register, there is a propagation delay to dout of thold+tdelay from the
clock edge which caused the write.

2. This question relates to the VHDL entity register_file specified above.

Write a synthesisable architecture for register_file. Your architecture must also simulate
accurately the timing specification for dout, and provide warning messages if the input setup
and hold timing constraints are not met.

[20 marks]

 4 of 8

3. This question relates to the VHDL entity register_file specified on the previous page.

(a) A set of stimulus vectors is defined by the recurrence:

s0 = 1

si+1 = (31*si + 71) modulo 256

Write a VHDL function ram_test_data that has parameter i and returns an 8 bit binary
vector with unsigned value equal to si.

[5 marks]

(b) Using your function, write a VHDL testbench for register_file, with 10 registers, each of
8 bits, and with setup time = 10 ns, hold time = 5ns, and tdelay=20ns. The testbench must
reset the register file, and then successively write si into register i for i = 0 – 9. After each write
operation the testbench must check the values of all 10 registers, and print an error if any of
them are incorrect. The testbench must also check that dout is high impedance if cs = '0'. The
testbench should provide stimulus generators and monitors so that:

(i) The setup and hold times required by the register file are met.

(ii) Any correct implementation of the register file with the specified propagation delay will
pass the test.

(iii) An addr to dout propagation delay 1ns or more longer than the specification will
result in a testbench warning error.

(iv) Other than as above, output delay times, and input setup and hold times, need not be
explicitly tested.

At the end of the test the testbench must print out “Test completed”.

[15 marks]

 5 of 8

4. A timebase module for a digital storage oscilloscope is shown in Figure 2. The module controls
input of data to the oscilloscope memory. It has an input clock clk, and all operation is
synchronous with the negative edge of this clock. The module outputs are x_address : a 10 bit
X axis address, and sample_now. A clk cycle with sample_now = '1' will instruct the rest of the
oscilloscope circuitry to input a new data sample to the ram location specified by x_address.
The value of x_address starts at 0 and counts up to 1023. During this process sample_now will
therefore be '1' for exactly 1024 cycles. The timebase logic determines the length of time
between successive samples using the divide by n counter shown in Figure 2. Clock signals are
omitted from this figure.

The timebase module has two possible sampling rates, a and b cycles/sample. It is controlled
by the three trigger signals start_a, start_b, end_b. A '1' on start_a enables sampling at a rate of
a cycles/sample. Samples continue at rate a until start_b is '1'. Sampling then continues at rate
b until end_b is '1', at which time the sampling rate returns to a. If 1024 samples have been
taken, at any stage in this progression, sampling is disabled and the module enters a hold-off
state for a time of h*a clock cycles. At the end of this time x_address is reset to 0 and sampling
will be enabled again by the next ‘1’ on start_a.

A Finite State Machine controls the operation of the timebase and has 5 states: waiting,
first_a_sweep, b_sweep, second_a_sweep, holdoff.
A VHDL Entity for the timebase module is shown below:
ENTITY timebase IS
PORT(
reset, clk, start_a, start_b, end_b: IN std_logic;
a, b, h: IN integer range 0 to 1023;
x_address: OUT std_logic_vector(9 DOWNTO 0);
sample_now: OUT std_logic

);
END timebase;

(a) Write a state diagram for the state machine in block FSM of Figure 2. Note that in general the
outputs of this block may depend on its inputs, as well as the current state.

[8 marks]

(b) Write a synthesisable VHDL architecture for entity timebase.

 [12 marks]

 6 of 8

Figure 2

÷n

 ÷1024

a

b

clk

n
x_address

FSM

MPX

h

sample_now

start_a
start_b
end_b

reset

timebase

=n-1

10
10

10

10

10
 b

 a
 a=b

enable

sel
en

sample_now

 0

 1 sel

x y
=1023z

 7 of 8

5.

(a) A 2 bit binary adder has inputs A0:1 and B0:1 and sum output S0:1, where 1 is the most
significant bit. Write down an ordered binary decision diagram which represents the boolean
expression for S1 with variable order (A1,B1,A0,B0), and simplify it to get a ROBDD. You
need not provide any proof of your simplification.

[8 marks]

(b) Figure 3 shows a circuit for a 6 bit binary comparator which compares words A0:5 and B0:5,
where 5 is the most significant bit. Each comparison block has the truth table shown in
Figure 4. You may assume that the delay through each comparison block is equal to 2 units
from any input to any output. Use controllability factoring, applied at point Z for output A>B,
and point Y for output A=B, to find an equivalent circuit with smaller maximum delay. You may
use any combination of comparison blocks and 2 input multiplexors. You may also use the
following gates: invertors, 2 input xor, 2 or 3 input and and or. Give the new circuit, and its
maximum propagation delay from any input to output, assuming that a multiplexor has 2 units
delay from any input to output, and all other gates have 1 unit delay.

[12 marks]

Figure 3

Ai Bi >i-1 =i-1 >i =i

0 0 a b a b

0 1 X X 0 0

1 0 X X 1 0

1 1 a b a b

Figure 4

A
>
=
B

>
=

A
>
=
B

>
=

A
>
=
B

>
=

A
>
=
B

>
=

A
>
=
B

>
=

A
>
=
B

>
=

0
1

B0 B1 B2 B3 B4 B5

A0 A1 A2 A3 A4 A5

Z

Y

A>B

A=B

 8 of 8 [END]

6. A floating point adder has entity:
ENTITY fp_adder IS
GENERIC(

e_size: INTEGER := 8;
m_size: INTEGER := 16

);
PORT(

a, b: IN std_logic_vector(0 TO e_size+m_size-1);
c: OUT std_logic_vector(0 TO e_size+m_size-1);
clk: std_logic

);
END fp_adder;

The adder operates on floating point numbers represented by an exponent of e_size bits and
a mantissa of m_size bits. The mantissa is a two's complement signed integer. The exponent
is an unsigned integer. The exponent and mantissa are held in bits (0 TO e_size-1), and
(e_size TO e_size+m_size-1), respectively, of the vectors a,b,c above.
The adder generates its output in three pipelined stages: swap, align and add. Each stage
performs some arithmetic or logical function and stores its outputs in a positive edge triggered
flip-flop clocked by clk, as shown in Figure 5. The numbers on multiple-bit data paths
indicate their width, where e = e_size and m = m_size.
The swap stage contains a block “>” which performs unsigned comparison of the two
exponents, and controls two multiplexors MPX. This stage swaps a and b if necessary to ensure
that the exponent at aa is no greater than that at bb. The align stage block “-” calculates the
difference in exponents, and block “ASR” has an output q equal to the arithmetic right shift of
input x by input n. This stage shifts the mantissa of aa by an amount equal to the difference
between the two exponents, so that both mantissas are scaled by the exponent of bb. Finally the
add stage uses block “+” to add the two mantissas, and generate an m+1 bit signed result. The
most significant m bits of this result are used for the mantissa of c, and the exponent of c is
generated from that of bb by adding 1 in the “+1” block.
Write a synthesisable VHDL architecture for fp_adder.

[20 marks]

[Note to candidates: In arithmetic right shift the sign bit is shifted into vacated bit positions]

fp_adder

M PX

>>>>

e

e

a

b

A S R

M PX

–

e

m

e

D Q D Q

D QD Q

+

m m

m

e
m + 1 D Q

D Qe

m + e

m + e m + e

m + e

m + e

m + e
m + e

m + e

m + e c

addalignsw ap

clk

aa

bb + 1 e

m

em + e

y
x y> x x

y y-x

x q
n

x x+ 1

1

0

1

0

sel

sel

Figure 5

