MNeihe (vvf?j

P —
Jbte U4

Paper Number(s): E2.19 (€27 T)

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2005

EEE Part ll: MEng, BEng and ACGI
INTRODUCTION TO COMPUTER ARCHITECTURE

Wednesday 8™ June 2005 2:00pm

There are THREE questions on this paper.
Question 1 is compulsory and carries 40% of the marks.

Answer Question 1 and EITHER Question 2 (carrying 60%)
or Question 3 (carrying 60%).

This exam is open book

Time allowed: 1:30 hours.

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Clarke, T.
Second Marker(s). Demiris, Y.K.

© University of London 2005

Students may bring any written aids into this examination.

Question 1 is compulsory, and carries 40% of the total mark, this
equals a time of 36 minutes.

Answer EITHER Question 2 OR Question 3, each of which carries
60% of the total mark, corresponding to a time of 54 minutes.

‘E1.9 Section A, E2.19]

Question 1 is compulsory

a) Convert into a decimal integer or rational number each of the following
hexadecimal words, interpreted as specified.

(1) Oxcde2, 16 bit unsigned
(i1) 0Oxfde2, 16 bit signed
(1i1) 0x90600000, IEEE 754 floating point.
[6]

b) Write in assembler a length optimal ARM assembler fragment which
implements the following pseudo-code, assuming the comparison to be
signed:

if r0 < r9 + 5 then rl := r2-r3 else rl := rd+r5

(8]

c) Noting that 2159 = (128-1)*(16+1) , determine a sequence of ARM data
processing instructions that will set r1 equal to 2159*x 0 in two machine
cycles leaving all other registers unchanged.

6]

d) Determine the changes to registers and/or memory locations resulting from
each instruction in the ARM interrupt service routine (ISR) shown in Figure
1.1. Explain the use of r13 and herce the overall function of the code. Write

an optimised version of this code for use with the ARM Fast Interrupt (FIQ).
[10]

e) Trace through execution of code fragment COPYLOOP in Figure 1.2 when
the initial value of r2 is 9, giving the sequence of conditionally executing
instructions and stating in each case whether the instruction condition is true.
You may assume that, when the instruction condition is true, branch
instructions take 2 machine cycles, multiple register load and store
instructions with n registers in their masks take # + 1 machine cycles, and all
other instructions (including any with instruction condition false) take 1
machine cycle. Determine the number of machine cycles taken by the
COPYLOOP loop when it iterates 1 times (n > 1). Hence or otherwise
determine the asymptotic limit for ‘arge n of the ratio of number of memory

bytes written to the number of machine cycles used by this code fragment.
[10]

STR r0, [rl1l3], #1
LDR r(0, TIME

ADD r(C, r0, #1

STR r¢, TIME

LDR x(C, [xr13, #-1]1!
SUBS pc, rl4, #4

TIME % 4
Figurz 1.1
COPYLOOP SUBS r2, r2, #8
A LDMPLIA r0!, {r3-rl10}
B STMPLIA rl!t, {r3-rl0}
C BPL COPYLOOP
Figure 1.2

E1.9 Section A, E2.19] Page 1 of 3

2

The subroutine PARITY is shown in Figure 2.1.

a) Which registers are changed as the result of execution of PARIT Y? Indicate
how, by the addition of appropriate instructions, the registers r0 - r13 can
be preserved across the subroutine call. Specify precisely where in the
PARITY code the additional instructions must be inserted, and what these

are.
[15]

b) The code between PA and PB calculates a result r4 = f(x3). Describe the

function f.
(15]

c) State precisely in what way PARITY modifies the contents of memory, using

where necessary the function f from part b.
[15]

d) Write an alternative to the code between PA and PB using a lookup from a
256 byte constant table in memory to speed up execution. You need not
provide code to initialise the table, or a definition of the table in assembler,

but must specify precisely the table's contents.
[15]

PARITY ADR r0, BUFFER
MOV rl, #0
MOV r2, #0
MOV ‘r7, #0

Ll LDRB r3, [r0,rl]
EOR r7, r7, r3

PA
MOV rd, #0
MOV r5, r3, lsl #24
L2 MOVS r5, r5, lsl #1
ADDMI 14, r4, #1
BNE L2
AND rd4, rd, #1
PB
AND r3, r3, #&7f
ORR r3, r3, rd4d, 1lsl #7
EOR r7, r7, 3
STRB r3, [r0,rl]
ADD rl, rl, #1
CMP rl, #128
BNE Ll
STRB r7, [r0,rll]
MOV pc, rid
BUFFER % 129 ;129 byte memory buffer

Figure 2.1

‘E1.9 Section A, E2.19] Page 2 of 3

a) Write paragraphs of no more than 50 words which answer each of the

following questions:

(1) What is an Instruction Set Architecture?
: [3]
1) How do instructions in the ARM Instruction Set Architecture support

the implementation of stacks.

[4]

(1) How does the mechanism of shadow registers in the ARM Instruction

Set Architecture enable transparent handling of IRQ mode interrupts.
(3]

b) Draw a diagram illustrating how the bits of 0, r1 and the Carry status bit
change after the execution of the ARM code fragment in Figure 3.1. Write in
ARM assembler a subroutine REVERSE, using an ascending stack in which
the register r13 points to the highest memory word used by the stack. On
exit register r 0 must be set equal to its value on subroutine entry but with
bits reversed, so that bit # becomes bit 31- # and vice versa. All other
registers are unchanged.

[20]

c) A CPU with 8 bit data bus uses a write-back direct access data cache to speed
up its access to main memory. The cache contains only 1 line of length 4
bytes. The data memory usage of a program consists of 5 byte pushes,
followed by 5 byte pops, on an ascending stack, where the first stack location
written has address hexadecimal 0x100. You may assume that instructions
are fetched from a separate instruct.on memory, and that this process does not
affect the data cache.

(1) What is the total size, in bytes, of the data cache? Assuming that the
CPU address bus is 20 bits in length, determine the (possibly empty)
sets of bits in the CPU address corresponding to the cache tag, index,
and select fields.

(8]

(i1) Determine the sequence of data read and write addresses issued by

the CPU to the data cache during the program execution.
' [41

(i) Assume initially that valid tits for all data cache lines are false. Trace
through sequence of CPU data operations specified in part (ii)
indicating the sequence of main memory reads and writes that are
required, and the state of data cache valid and dirty bits after each

CPU data operation.
[18]

MOV r0, r0, rrx #1
ADCS rl, rl, rl

Figure 3.1

(k1.9 Section A, E2.19] Page 3 of 3

Mg s C o,
SOLUTIONS - =22 m[€1 .9 & A

T

'J(ApL T oo &

Question 1

a) Determine the numbers represented by the hexadecimal bit-pattern
0x90003001 when interpreted as specified.

(1) Oxcde2, 16 bit unsigned
(ii) Oxfde2, 16 bit signed
(iii) 0x90600000, IEEE 754 floating point.

(i) 50402
(i) -542
(iiiy -2 #1775 = 4.42%107%

ADD rl10, r9, #5
SUB r0, rlo0
SUBMI r0, r2,r3
ADDPL rQ, r4, r5

<) ADD rl, r0O, r0, 1lsl 4
RSB rl, rl, rl, 1lsl 7

d) The first instruction stores r0 on the stack — notice this is the IRQ stack since
the interrupt will have swapped to a shadow r13. The next three instructons
load r0 from a word in memory, increment it, and save to memory. The
penultimate instruction restores the old value of r0. The final instruction
returns from the interrupt swapping back to user registers.

Note that the save & load are needed because r0 is not shadowed. In an FIQ
there are extra shadow registers available. One of these (r8-r12) could be
used instead of r0 in which case the r0 save/restore would not be needed. In
fact the value of TIME could be kept permanently in the FIQ register so
reducing the FIQ to just 2 instructions.

Execution 1f r2=9. Condition true unless otherwise specified.

COPYLOOP

A

B

C

COPYLOOP

A (condition false)

B (condition false)

C (condition false)
Time taken is 1+9+9+2 cycles for all iterations other than the last, or
I+1+1+1 cycles for last iteration only. So t = 21*n-17. 8 words => 32 bytes
are transferred each iteration, so asymptotically 32/21 bytes are transferred
each cycle.

11119 Section A, E2.19] Page § of 4

SOLUTIONS

Question 2
a)
rO.r1,r2,r3,r4,r5,r7 changed.
STMED r13!,{r0,r1,r2,r3,r4,r5,r7} ; insert before first instruction
LDMED r13!,{r0,r1,r2,r3,r4,r5,r7} ; insert before MOV pc, r14,
; or add r15 to register list & replace the MOV pc
b)

[calculates the xor of the bottom 7 bits of r3, and sets the bottom 7 bits of
r4 = r3, and the top bit equal to this xor (the 7 bit parity).

¢)
Bytes BUFFER — BUFFER+127 are modified as mem[x] < fimem[x]). Byte

BUFFER+128 is set to the 8 bit bitwise xor of all the bytes from BUFFER to
BUFFER+127.

d)
ADR], TABLE
LDR r4, [r1,r3]

Byte 1 of TABLE initialised to contain f{v)

119 Section A, E2.19] Page 2of 4

SOLUTIONS

Question 3

a) An ISA 1s a precise definition of the operation of a CPU at the level of
machine instructions which defines the CPU registers, the function, but not
timing, of each instruction and also the function (but not timing) of interrupts
and exceptions.

The ARM ISA provides multiple register load & store instructions, which
contain a register mask allowing any subset of the 16 ARM registers to be
loaded or stored from successive locations in memory as determined by
another of the registers. The 4 types of stack: ascending/descending and SP
full or empty, each have corresponding versions of these instructions:
LDM/STM suffix EAED, FA, FD SP points to empty/full location, stack
grows Ascending, descending. Furthermore, each LDM/STM instruction can
cither update the register used as stack pointer, or leave the SP unchanged as
when accessing data on the stack.

IRQ mode shadows r14 & r13 & also has a register which saves the user
CPSR. The IRQ mode r13 points to a separate IRQ stack allowing interrupt
code to execute safely independent of user code. Other registers can be saved
& restored using this stack as necessary, and the user instruction stream
restored by restoring the CPSR from the IRQ SPSR, and the user pc from the

IRQ r14.

b)

REVERSE STMFA r1i3!', {rl,r2}
MOV r2, #32

REV1 MOV r0, r0, lsr #1
MOV rl, rl, 1lsl #1
SUBS r2, r2, #1
BPL REV1

LDMFA ri3!, {rl,r2,rl5}

111 9 Section A, E2.19] Page § of 4

SOLUTIONS
<)
(1) size 4 bytes, select A1:0, tag A19:2, index has no bits.

(11) (all in hex) W100, W101, W102, W103, W104, R104, R103, R102, R101, R100.
(R=Read. W=Write)

(111) There 1s only one cache line, it is always (after the first op) valid.

Data Valid Dirty Memory

op operation

W100 1 1 R100-103

W101 1 1

w102 1 1

W103 1 1

w104 1 1 W:100-103
R:104-107

R104 1 1

R103 1 0 W104-107
R:100-103

R102 1 0

R101 1 0

R100 1 0

1.9 Section A, E2.19]

Page ?4of4

