IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2007

ISE PART I/EEE PART Il

SOFTWARE ENGINEERING: INTRODUCTION, ALGORITHMS AND DATA
STRUCTURES

Friday, 8 June 2:00 pm

Time allowed: 1:30 hours

Corrected Copy

There are THREE questions on this paper.

Answer Question ONE and ONE other question.

This exam is OPEN BOOK.

Question One carries 40% of the marks; Questions Two and Three each carry
60%.

Any special instructions for invigilators and information for

candidates are on page 1.

Examiners responsible First Marker(s) : C. Bouganis
Second Marker(s) : G.A. Constantinides

© University of London 2007

“E1.8

A
L/E218)

Special information for invigilators:
Students may bring any written or printed aids into the examination.

Information for candidates:
Marks may be deducted for answers that use unnecessarily complicated algorithms.

Software Engineering: Introduction, Algorithms & Data Structures 1/6

The Questions

1. [Compulsory]

a) Figure 1.1 shows a C++ function that computes the N** term of the following
arithmetic progression: a; = 1, apy1 = ax + b, with k > 1 where b is an integer.
For example for b = 2 and N = 3, the function should return a value of 5.
Identify five errors in the C++ code.

void calculateNterm (N, int b) {
inti;
intak=1;
for (i=0; 1 < N; i=i+2);
ak =ak +b;
return ak;

}

Figure 1.1 calculateNterm function.

: [6]

b) Write a C++ recursive function that performs the calculation described in part (a).
[6]
c) 1) A set of numbers is inserted in an ordered binary tree (ascending or-

der). Draw a tree for each of the following sets assuming that the
elements in the sets are inserted in order.

e {10,23,5,80,100,9, 15}
e {10,23,50,80,90, 100}

[4]

it) An alternative data structure to an ordered binary tree is an ordered link
list. Repeat the same process as in part (i) for an ordered list (ascending
order) and draw the list for both sets.

[3]

iii) Compare the two data structures in terms of the average number of
operations required to find an item, and in terms of memory efficiency,
for both sets of numbers.

(3]

d) Construct a parse tree for the following expressions:
i) (4%3+12)%6 [2]
ii) 3%(5+4)/7%8 12

[continued on the following page]

Software Engineering: Introduction, Algorithms & Data Structures

216

e) Consider the C++ code segment in Figure 1.2. With justification, state the
values of variables x and y after the code segment is executed. The code for the
function swap () is shown in Figure 1.3.

int x=10;

int y=20;

int *px = &x;
int *py;

Py = new int;
APy =Y

swap (x, y);
*PX = *pX + 1;
*py = *py + 10;

Figure 1.2 Code segment.

void swap (int& x, int& y) {
int temp;
temp = x;
Xi= s
y = temp;

}
Figure 1.3 swap () function.

[7]

f) Figure 1.4 shows the type declaration for a dynamic linked list of integers in
C++. Write a C++ recursive function that takes as one of its inputs the hdList
pointer and returns the sum of the data values in the list.

class Node {
public:
int data;
Node *next;

}

typedef Nodex NodePtr;
NodePtr hdList = NULL;

Figure 1.4 Linked list declaration.

[7]

Software Engineering: Introduction, Algorithms & Data Structures

3/6

2 Figure 2.1 illustrates a state machine. The state machine takes one bit as input and its
output is one bit. Every state has a unique state number.

1/0
0/1

0/1

1/1 ‘

0/0

1/0

1/1

XY
X:input, Y:output

Figure 2.1 State machine.

a) Define a structure State capable of representing a state of the state machine.
(Hint: You should be able to represent the next state and output for the two
different values of the input).

[15]

b) Write a recursive function that takes as inputs a pointer to an initial state, and a
string S. The string S represents the value of the input at each clock cycle. The
function should return the pointer to the final state. The following two functions
are available:

bool notEmpty(const string& expression);
/Ireturns true if expression is not the empty string

char getNextChar(string& expression);
/Ireturns next character in expression, character is consumed

[15]

[continued on the following page]

Software Engineering: Introduction, Algorithms & Data Structures

4/6

c) Modify your function in the previous question to also return the corresponding
values of the output ¥ in a string. The first character in the output string should
correspond to the output signal of the starting state. The following function is
available:

void addChar(string& expression, char c);
/fadds the character c to the end of the string

[15]

d) Write a function that takes as input a pointer to an initial state, and returns the
number of the states in the state machine that can be reached from that initial
* state. Add, if it is necessary, an extra field in your structure State.

[15]

Software Engineering: Introduction, Algorithms & Data Structures 5/6

3 Figure 3.1 illustrates how the clock signal is distributed in a device. Every arrow in
the figure corresponds to a wire, and every node represents a connection between wires.
You can assume that every node has a unique number (id). The number on each arrow
represents the delay of the signal along the corresponding wire. The delay on each wire
is always an integer. Assume that each node connects an incoming wire to two outgoing
wires. The node O represents the start of the clock distribution.

Figure 3.1 Clock distribution.

a) Define a structure CT capable of representing a node of the structure shown in
Figure 3.1.

[15]

b) Write a function CalculateDelay that takes as input a node number and the

pointer to node 0, and calculates the total delay from the start of the clock
(node 0) to that node. For example, for the node with id = 5, the total delay is
3+1+2=6.

[20]
c) Write a function that finds the node with the maximum delay from node 0. The

function should also return the id of the node that corresponds to that maximum
delay. The function should take as input the pointer to node 0.

[25]

Software Engineering: Introduction, Algorithms & Data Structures 6/6

Ei&[E204a]

SOLUTIONS 2007

1. (This question covers most of the syllabus.)

a) The correct code is shown in Figure 1.1.

int calculateNterm (int N, int b) {
int i;
intak=1;
for (i=1; i < N; i=i+1)
ak =ak +b;
return ak;

Figure 1.1 Solution 1a.

[6]
b) The solution is shown in Figure 1.2.
int calculateNtermRec (int N, int b) {
if (N==1)
return 1;
else
return calculateNtermRec (N-1, b) + b;
}
Figure 1.2 Solution 1b.
[6]
c) i) Solution in Figure 1.3,
[4]
i) Solution in Figure 1.4,
[3]
1ii) First set of numbers. The tree structure is more efficient in finding an

item on average and it uses more memory than the list structure.

Second set of numbers. The tree structure requires the same number of
operations on average to find an item as the list structure. It also uses
more memory than the list structure,

[3]
d) i) Solution in Figure 1.5.

Software Engineering: Introduction, Algorithms & Data Structures

6211&
//

—

4 Yy
Y18 e
A
100
104
23,
B
* 90
A
100

Figure 1.3 Solution Ici.

5% 9% 10»15»23» 80 » 100

10 23 » 50 » 80 * 90> 100

Figure 1.4 Solution Icii.

e
i
AN
./ 12
VA"
4 3

Figure 1.5 Solution 1di.

Software Engineering: Introduction, Algorithms & Data Structures

[2]

ii) Solution in Figure 1.6.
N,
VRN
* 7
7\
3 -
/ N\
= 4

Figure 1.6 Solution 1dii.

(2]
e) The px pointer points to x, where the py pointer points to a copy of y. Thus,
x=2landy=10
(7]
f) Solution in Figure 1.7.
int SumRec (NodePtr hdList){
if (hdList == NULL)
return 0;
else
return SumRec(hdList->next) + hdList->data:
}
Figure 1.7 Solution 1f.
[7]
Software Engineering: Introduction, Algorithms & Data Structures 36

"l{-—;

2 (This question tests students’ ability to construct abstract data types. The first
three parts can be answered without any knowledge about the existence of cycles.
The fourth part is more challenging, since the existence of cycles should be handled.
Directed cyclic graphs have not been covered as an example during the course.)

a) Solution in Figure 2.1.

class State {
public:
int stateID;
State *nextStateHigh;
State *nextStateLow;
char outputHight;
char outputLow;

¥
(optional)

typedef Statex StatePtr;

Figure 2.1 Solution 2a.

[15]
b) Solution in Figure 2.2.

StatePtr processInput (StatePtr ST, string& S) {
char c;
if (notEmpty(S)) {
¢ = getNextChar(S);

if (c=="1")
ST = ST->nextStateHigh;
else

ST = ST->nextStateLow;
return processInput(ST, S);

}
else
return ST;
1
Figure 2.2 Solution 2b.
[15]
c) Solution in Figure 2.3.
[15]
d) Solution in Figure 2.4. Add the following field in the structure: int visited;, and

initialize it to zero. If this variable has value 1, it means that the state has been
visited, otherwise has not.

Software Engineering: Introduction, Algorithms & Data Structures

<|?

StatePtr processInputOutput (StatePtr ST, string& S, string& output) {
char c;
char out;
if notEmpty(S) {
¢ = getNextChar(S);
if (c=="1") {
out = ST->outputHigh;
ST = ST->nextStateHigh;

}
else {
out = ST->outputLow;
ST = ST->nextStateLow;
}

addChar(output, out);

return processInputOutput(ST, S, output);
}
else

return ST;

Figure 2.3 Solution 2c.

void stateNumber (StatePtr ST, int& N) {
if (ST->visited == 0) {
ST->visited =1;
N=N+ j &
stateNumber (ST->nextStateHigh, N);
stateNumber (ST->nextStateLow, N);

Figure 2.4 Solution 2d.

[15]

Software Engineering: Introduction, Algorithms & Data Structures

-

LN

(7

8 (This question tests students’ ability to manipulate a binary tree data structure.
The challenging part of the question is that the students should handle the infor-
mation on the edges too.)

a) Solution in Figure 3.1.

class CT {
public:
int id;
CT *left;
CT *right;
int leftWeight;
int rightWeight;

h

(optional)
typedef CT* CTPur;

Figure 3.1 Solution 3a.

[15]
b) Solution in Figure 3.2.

void calculateDelay (CTPtr node, int id, int N, int& Delay, bool& found) {
found = false;
if (node->id ==id) {

Delay = N;
found = true;
}
else {

if ((!found) && (node->left != NULL))

calculateDelay (node->left, id, N + node->leftWeight, Delay, found);
if ((!found) && (node->right != NULL))

calculateDelay (node->right, id, N + node->rightWeight, Delay, found);

Figure 3.2 Solution 3b.

[20]
c) Solution in Figure 3.3.

[25]

Software Engineering: Introduction, Algorithms & Data Structures

{ ['7

void maximumDelay (CTPtr node, int currentDelay, int& id, int& maxDelay) {
if (maxDelay < currentDelay) {
maxDelay = currentDelay;
id = node->id;

}
if (node->left != NULL)

maximumDelay (node->left, currentDelay + node->leftWeight, id, maxDelay);
if (node->right != NULL)

maximumDelay (node->right, currentDelay + node->ri ghtWeight, id, maxDelay);

Figure 3.3 Solution 3c.

Software Engineering: Introduction, Al gorithms & Data Structures

= |7

