Paper Number(s): E1.8
<E2.18

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2006

EEE Part Il / ISE Part I: MEng, BEng and ACGI

Corrected Copy

Ny~

SOFTWARE ENGINEERING: INTRODUCTION, ALGORITHMS AND
DATA STRUCTURES

Tuesday 23rd May 2006 2:00pm

There are THREE questions on this paper.
Question 1 is compulsory and carries 40% of the marks.

Answer Question 1 and EITHER Question 2 (carrying 60%)
or Question 3 (carrying 60%).

This exam is open book

Time allowed: 1:30 hours.

Any special instructions for invigilators and information for candidates are on
page 1.

Examiners responsible:

First Marker(s): Cheung, PYK.
Second Marker(s): Constantinides, G

© University of London 2006

Information for invigilators:

Students may bring any written or printed aids into the examination.

Information for candidates:

Marks may be deducted for answers that use unnecessarily complicated algorithms.

E1.8/E2.18 Software Engineering: Algorithms & Data Structures Page 1 of 5

[Question 1 is compulsory]

a)

b)

d)

E1.8/E2.18 Software Engineering: Algorithms & Data Structures

The following C++ function computes the number of address bits required to access
memory with n locations where n > 1. For example, if n = 218, then the function
should return a value of 8. Identify five errors in the C++ code.

int addressBits (n) {
int temp;
for (1 =0; i<n; 1=1 =* 2);
temp++
return temp ;
}
[7]

A set of surnames are inserted into an ordered binary tree. Draw a tree for each of the
following lists of surnames assuming that elements of the list are inserted in order.

(i) (Smith, Lee, Patel, Jones, Davidson, Yate, Ko)

(i) (Lee, Smith, Jones, Ko, Patel, Yate, Davidson)
[6]
The Fibonacci numbers F, are defined as follows:
Fivo = Fy + Fijgy Fop=1, F =1

Write a C++ recursive function that returns the Fibonacci number for an input n, where
n> 0. (No marks will be awarded if recursion is not used.)
[6]

For each of the following situations, state with reasons which type of loops (i.e. while,
do-while or for) would work best:

(1) Reading in the list of failed subjects for a student.
(ii) Calculating the sum of a finite series.

(iii) Testing for a list of items where the list has at least one item.

(7]
Construct a parse tree for the following expressions:
iy B+H*7+5-5%9
(i) ((4—6)/8 + 9)*3
(7]

Consider the following C++ code segment. With justification, state the values of the
integer variables x and y after the code segment is executed.

int x = 37;
int y = 99;
int *ptr x = &x;
int *ptr y = &y ;
*ptr_x = *ptr_y ;
(7]

Page 2 of 5

2. The following is the type declaration for a dynamic doubly-linked list of integers in C++.

class Node {
public:
int data;
Node *next;
Node *prev;

}i

typedef Node* NodePtr;
NodePtr hdList = NULL;

a) Write a C++ function listLength () that takes the linked list pointed to by hdList

and returns number of nodes in the list.
[10]

b) Write a C++ access function middleItem() that takes the linked list pointed to by
hdList and returns the integer halfway along the list. In other words, if the list is of

length N, the function returns the integer stored in the ¥ #node if N is even, and the
2

N +1" node if N is odd. You should use the following method: count the number of
2

nodes in the list using the function listLength (), then start from the beginning of

the list and traverse the list by the correct number of nodes. If the list is empty, return

a value of 0.

[10]

¢) Write a new version of the function middleItem() that uses the following method.
Traverse the list from the head of the list using two pointers. The first pointer
advances one node at a time and the second pointer advances two nodes at a time.
When the second pointer reaches the end of the list, the first pointer will be pointing

to the node required.
[15]

d) State with justification which of the two versions of the function middleItem() is
more efficient.

[5]

¢) Hence, or otherwise, write a C++ function to insert a new node just before the middle
item of the linked list.
[20]

E1.8/E2.18 Software Engineering: Algorithms & Data Structures Page 3 of 5

3. The following is the type declaration for a sorted binary tree of strings in C++.

class TreeNode {
public:
string name;
TreeNode *left;
TreeNode *right;

}i

typedef TreeNode* TreePtr;
TreePtr tree = NULL;

The following access functions are already available:

// Return a pointer pointing to the left child of the tree
TreePtr leftChild (TreePtr tree) {

return tree->left;
}

// Return a pointer pointing to the right child of the tree
TreePtr rightChild (TreePtr tree) |{
return tree->right;

}

a) Write a C++ function treeCount () that takes as input a pointer to the root of a
binary tree and returns the number of nodes in the tree. For example, for the binary
tree shown in Figure 3.1, treeCount () should return a value of 8.

[10]

b) Hence, or otherwise, write a C++ function treeDifference () that takes as input a
pointer to the root of a binary tree and returns the difference between the number of
nodes in its left sub-tree and the number of nodes in its right sub-tree. For the binary
tree shown in Figure 3.1, treeDifference () should return a value of -1.

(5]

c) Write another C++ function treeDepth () that returns the depth of the binary tree.
The depth is the number of nodes in the longest branch of the tree from the root to the
leaf. For the binary tree shown in Figure 3.1, the longest branch is: peter > sam =

ray <> phil, and treeDepth () should return a value of 4.
[15]

d) A sorted binary tree of strings has been created. If the values returned by
treeDifference() and treeDepth() are the same, what can you deduce about

the data stored in the tree and the tree structure?
[10]

E1.8/E2.18 Software Engineering: Algorithms & Data Structures Page 4 of 5

e) It is desirable to split a binary tree into two separate trees T1 and T2 which are
roughly the same size. A C++ function treeSplit() to achieve this has the
following function prototype:

TreePtr treeSplit (TreePtr treeRoot);

The input to the function is the pointer treeRoot pointing to the root of the original
tree. On exit the function returns a pointer to T2 and treeRoot remains unchanged,
but the original tree is now trimmed to T1. Figure 3.2 shows the results of
treeSplit () when applied to the tree in Figure 3.1.

The algorithm of treeSplit () is described by the following steps:

1. Assuming that the number of nodes is odd, find the number of nodes of the
entire tree;

2. Calculate the desired number of nodes (B) for each sub-tree after splitting;

3. Starting from the root of the tree and if the pointer is not empty,
find the numbers of nodes on the left and the right sub-trees ;

4. Traverse to the side that has higher number of nodes;

Repeat 3 and 4 until the node count is B or lower, a pointer to T2 is now found;

6. Trim T2 from the original tree to form T1.

w

Write a treeSplit () function in C++.
[20]

peter
/N

john

sam
NV
fred mike ray will
/
phil
Figure 3.1

returned
/peter\ pointer _*‘)/Sam\

john ray will
fred mike phil
L T ol T2
Figure 3.2
[THE END]

E1.8/E2.18 Sofiware Engineering: Algorithms & Data Structures Page 5 of 5

