IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2007**

ISE PART II: MEng, BEng and ACGI

CORRECTED COPY

DISCRETE MATHEMATICS AND COMPUTATIONAL COMPLEXITY

Monday, 21 May 2:00 pm

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory. Answer Q1 and any two of questions 2-4. Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): G.A. Constantinides, G.A. Constantinides

Second Marker(s): T.J.W. Clarke, T.J.W. Clarke

NOTATION

The following notation is used throughout this paper:

 \mathbb{R} : The set of real numbers.

 \mathbb{Z} : The set of integers.

 \mathbb{Z}_+ : The set of positive integers.

 \mathbb{C} : The set of complex numbers.

N: The set of natural numbers.

 $\mathcal{P}(S)$: The power set of set S.

The Questions

- 1. [Compulsory]
 - a) For the sets $S_1 = \{1,2\}$, $S_2 = \{2,3\}$, list the elements of
 - i) $S_1 \cup S_2$,
 - ii) $S_1 \cap S_2$,
 - iii) $S_1 S_2$,
 - iv) $S_1 \times S_2$,
 - v) $\mathscr{P}(S_1)$.

[7]

- b) Consider the relation $R = \{(1,2), (2,3), (3,4)\}$ on the set \mathbb{R} .
 - i) Let R be a function from A to B. Find the smallest cardinality A and B for this to be possible.
 - ii) List the elements of $R \cdot R$.
 - iii) List the elements of the transitive closure of R.
 - iv) Draw the digraph of R.
 - v) How many functions are there from the set R to itself?

[9]

- Express each of the following statements using appropriate logical syntax. You should take the set of complex numbers as the universe of discourse, and make use of a predicate P(x), meaning 'x is a real number'.
 - i) Every real number, when squared, gives a non-negative real number.
 - Every quadratic equation with complex coefficients has two complex roots.
 - iii) There are two distinct real numbers that are solutions to $x^2 1 = 0$.

91

d) i) Consider two functions f(x) and g(x). f(x) is known to be $\Theta(x^2)$ and g(x) is known to be $\Theta(x)$. Find functions p(x) and q(x) such that f(x) + g(x) is O(p(x)) and f(x)g(x) is O(q(x)).

- ii) Write some pseudo-code for a function fun1(x) that has worst-case execution time O(g(x)) and for a function fun2(x) that has worst-case execution time O(f(x)).
- iii) Show that if r(x) is $\Theta(s(x))$ then s(x) is $\Theta(r(x))$.

[9]

e) Write some pseudo-code for a function whose worst-case execution time satisfies f(n) = 3f(n/2) + n whenever n is an even number. Find a big-O expression for the worst-case execution time of this function.

[6]

- 2. a) Consider the function $f: A \to \mathbb{C}$ defined by $f(x) = \frac{e^{jx}}{1-x}$, where $j = \sqrt{-1}$.
 - i) If $A = \mathbb{R} K$, what is the smallest K, in the sense that if $A = \mathbb{R} K'$ then $K \subseteq K'$?
 - ii) Show that for this choice of K, the function f is an injection.
 - iii) Show that f is not a surjection for this choice of K.

[10]

- b) i) Show that the transitive closure of a relation R is equal to its connectivity relation R^* . You may assume that for an arbitrary relation Q, (i) Q is transitive iff Q^n is transitive for all positive integers n, (ii) Q is transitive iff $Q^n \subseteq Q$ for all positive integers n.
 - ii) Consider the function $g: S \to S$ defined by $g(x) = \lfloor \sqrt{x} \rfloor$. For $S = \{1, 2, ..., 16\}$, list the elements of $g \cdot g$ and the transitive closure g^* of g.

[20]

3. This question uses predicate logic to describe the behaviour of the simple circuit shown in Figure 3.1. Let the universe of discourse, corresponding to the set of clock periods, be \mathbb{N} . Each wire $i \in \{1,2\}$ is associated with a predicate $P_i(t)$. A logic-0 is present on a wire at a particular cycle t if the corresponding proposition $P_i(t)$ is false, and a logic-1 is present if the corresponding proposition $P_i(t)$ is true.

An axiom describing the function of the D-type flip-flop is given in equation (3.1).

$$\neg P_1(0) \land \forall t (P_1(t+1) \leftrightarrow P_2(t)). \tag{3.1}$$

a) Write a corresponding axiom for the inverter.

[4]

b) Write a proposition corresponding to the English sentence 'the inverter output at cycle 1 will have the opposite logical value to the inverter output at cycle 0'.

[5]

c) From the inverter and the flip-flop axioms, formally derive your proposition as conclusion. State the rule of inference used at each step in your working.

[15]

d) Show further that the conclusion $P_1(1)$ can be reached. State the rule of rule of inference used at each step in your working.

[6]

Figure 3.1 A circuit

- 4. This question is about multiplying two n-bit numbers, where n is a power of two, using only addition and shift arithmetic operations, each of which takes $\Theta(n)$ time for n bits. We shall use the operator '<<' to denote left-shift, i.e. x << y means 'x left-shifted by y bits'. We shall also represent n-bit numbers by binary arrays of length n, where the most-sigificant bit is element n-1 and the least significant bit is element 0.
 - a) A possible multiplication algorithm is shown in Figure 4.1. Derive a big- Θ expression for the execution time of this algorithm.

[7]

b) Let us denote the least-significant n/2 bits of A by A_L and the most-significant n/2 bits by A_H , and similarly for B, so that $A = 2^{n/2}A_H + A_L$ and $B = 2^{n/2}B_H + B_L$. Notice that $AB = 2^n(A_HB_H) + 2^{n/2}\{(A_L + A_H)(B_L + B_H) - A_HB_H - A_LB_L\} + A_LB_L$. Use this observation to propose a recursive multiplication algorithm.

[8]

c) State the Master Theorem.

[8]

 Derive a big-O expression for the recursive execution time, and comment on the result.

[7]

```
multiply( binary A[n], binary B[n])
begin

result := 0

for i := n-1 downto 0

if( A[i] = 1 ) then

result := (result << 1) + B

else

result := (result << 1)
```

Figure 4.1 An algorithm for multiplying two numbers

Discrete maths & Computational Complexits. 1/14 (NEW COMPUTED EZ.17/ a)(1) S, USz = {1,2,3} EXAMPLE) EJ.20 (ii) S, NSz = 823 16/4/07. (iii) S, - Sz = 513 (iv) $S_{1} \times S_{2} = \{(1,2), (1,3), (2,2), (2,3)\}$ (v) $P(S_1) = \{ \phi, \{13, \{23, \{1, 23\}\} \}$ b) (i) $A = \{1, 2, 3\}, B = \{2, 3, 4\}$ (ii) R R = {(1,3), (2,4)} (iii) R* = { (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)? $|R|^{|R|} = 3^3 = 27$ (v) |R|= 3

(NEW COMPUTED (XAMPLE)

```
c) i) \forall x \left( P(x) \rightarrow (x^2 7,0) \right)
     ii) Yayb Yc ]x, ]xz (ax2 + bx, +c = 0 1
                            ax_{2}^{2} + bx_{2} + c = 0
     iii) \exists \alpha_1 \exists \alpha_2 (\alpha_1 \neq \alpha_2 \land p(\alpha_1) \land p(\alpha_2)
                      d) i) p(x) = x^2 (suy) (NEW COMPUTED EXAMPLE)
       q(x) = x^3 (say)
          fun (a)

fun (a)

for i = 1 to x
                pr j= 1 to oc
                      total := total +1
           fun2(x)
{
th:=0
              fr i=1 to x
ttl:=ttl+1
```

(iii)
$$r(x)$$
 is $\theta(s(x))$
 $\exists c_1, c_2, K \le b$.
 $\Rightarrow c_1|s(x)| \le |r(x)| \le c_2|s(x)|$
when $x > K$
 $c_1|s(x)| \le |r(x)|$ (as $c_1 + re$)
 $\Rightarrow |s(x)| \le \frac{1}{6}|r(x)|$ (as $c_1 + re$)
 $\Rightarrow |s(x)| > |r(x)|$
 $\Rightarrow |s(x)| > \frac{1}{6}|r(x)|$ ($c = \frac{1}{6}$, K as hype)
 $\Rightarrow |s(x)| > \frac{1}{6}|r(x)|$ ($c = \frac{1}{6}$, K as hype)
 $\Rightarrow |s(x)| > \frac{1}{6}|r(x)|$ ($c = \frac{1}{6}$, K as hype)
 $\Rightarrow |s(x)| > \frac{1}{6}|r(x)|$ (NEU COMPUTED EXAMPLE)
fun (n : integr)
fun (n : integr)

 $c \cdot f \cdot f(n) = af(n|b) + cn^d$ a=3, b=2, c=1, $d=1 \Rightarrow O(n^{(a}\eta_2^3)$

```
Q2
  reach (R, a, , az)
            calls reach (R, & b, az)
              & reach (R, CB, az)
      reach (R, b, az) calls reach (R, d, az)
      rach (R, c, az) calls rach (R, d, az)
      Total of 4 subsoutive Calls
      Thus the = 1 + 4 + 2 × 4 + 22 × 4 - 4
               = 29 times = 25 time
                           = 21 ties
  (ii) 9, -> b > --- > 92
       rech (R, a,, az)
           calls rench (K, & b, az)
      Total of 11 subsortine alls + original all
             = 12 calls
```

(NEW COMPUTED EXAMPLE)

Solution the interce for
$$fg$$
 2.2(a)

give a degraph with $1+3K$ radio

and $|R| = 4K$ edges.

Total #est subsolve all is

 $4 + 2x4 + ... + 2^{K-1} \times 24 - 2\frac{3}{2}^{K-1} \times 2$
 $= 4(1+2+...+2^{K-1}) - 2^{K}$
 $= 4(2^{K-1}) - 2^{K}$
 $= 4(2^{K-1}) - 2^{K}$
 $= 4(2^{1K1/4} - 1) - 2^{1K1/4}$

is $-\Omega(2^{1K1})$

=> Exponential time.

(NEW COMPUTED EXAMPLE) c) Two main improvements (i) early exit (ii) much visited nodes visited[] -> init to pulse reach (R, a,, az) y (a,, az) € R result := true else bagin result := jobe while (result = false) do select rest a s.t. (a, a) ER if reach(1,79, 02) then if NOT visited [a] then if reach(R, a, az) then

result := Eme

c) (cottined)

Total # subnortine calls is at most #nodes.

=2p => poly time. (R \in V \times V).

a) (i) Every real
$$x$$
 has a corresponding $f(x) \in C$ except 1. So $K = \{1\}$.

(ii)
$$f(x) = f(y)$$

 $\frac{e^{jx}}{1-x} = \frac{e^{jy}}{1-y} \Rightarrow |\frac{e^{jy}}{1-x}| = |\frac{e^{jy}}{1-y}|$
 $\Rightarrow \frac{1}{1-x} = \frac{1}{1-y} \Rightarrow 1-y = 1-x$
 $\Rightarrow x = y$

(iii)
$$\frac{1}{1-\pi} \in C$$

for
$$f(x) = \frac{1}{1-\pi}$$

we would require $\frac{e^{-\frac{1}{2}x}}{1-x} = \frac{1}{1-\pi}$
 $\Rightarrow \frac{1}{1-x} = \frac{1}{1-\pi} \Rightarrow x = \pi$.

But at
$$a=\pi$$
, $f(x)=\int_{-\pi}^{\pi} f(x) dx$

CONTRADIETION.

(10)

b) (1) R=RU R2U...

We want to show R* is the combinity transitive relation containing R.

Prof: a) R S R* directly

We must show b) R is transitive

c) R* S for any Consiture S s.t. RES.

b) $(a,b) \in \mathbb{R}^{+}$, $(b,c) \in \mathbb{R}^{+}$. \mathbb{R}^{+} is $\forall a \in \mathbb{R}^{+}$ and putter $\Rightarrow (a,c) \in \mathbb{R}^{+}$:

John pth $a \Rightarrow b$ be then $b \Rightarrow c$.

c) line S is trousitive, 5ⁿ is trousitive and Sⁿ ⊆ S.

S*=SUSU..., S^CS => S*CS

RES => R" ES*

.. R° CS° CS

(360 KWOKK)

(ii)
$$g = \{(1,1),(2,1),(3,1),(4,2),(5,2),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3),(12,3),(13,3),(14,3),(15,3),(16,4)\}$$

 $g \cdot g = \{(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (6,1), (6,1), (6,1), (9,1), (10,1), (10,1), (11,1), (12,1), (13,1), (14,1), (15,1), (16,2) \}$

(NEU CZO]

COMPUTED

EXAMPLE)

4. a)
$$H(l_2(t) \Leftrightarrow \neg P_1(t))$$

b) $l_2(1) \Leftrightarrow \neg P_2(0)$

c) $V(P_1(t+1) \Leftrightarrow P_2(t))$

(Suphriston for 4.1)

 $P_1(1) \Leftrightarrow l_2(0)$

(unital intertial)

 $P_2(1) \Leftrightarrow \neg P_1(1)$

(Suphriston)

 $P_2(0) \Rightarrow \neg P_2(0)$

(Hypothetical Suphriston)

 $P_2(0) \Rightarrow \neg P_2(0)$

(Suphriston)

 $P_2(0) \Rightarrow \neg P_1(1)$

(Suphriston)

 $P_2(0) \Rightarrow \neg P_2(0)$

(Suphriston)

 $P_2(0) \Rightarrow \neg P_1(1)$

(Suphriston)

 $P_2(0) \Rightarrow P_2(1)$

(Hypothetical Suphriston)

Des Cisi

We have P2(1) 0 7 P2(0) and TP, (0) (simplificate for 4.1) The latter gives P2(0) (Universit instant + modus povens) Thus from (c) ve get 7 /2(1) (modus tollers)

Filly, we obtain P.(1)
(Universit instant + modus totlens)

DA7

[6]

 $+(T3)^{-}$

اسم ما

027 (8)

c) (et a), le real, b>1 k integer, c>0 k real, d>0 k integer, d>0 k real (d), d>0 k real (d) f(n) k werearing s.t.

$$f(n) = a f(n/b) + cnd when n=bK, for the integer K.$$

(i) If $a = bd$, $f(n) \approx O(nd \log n)$

(ii) If $a = bd$, $f(n) \approx O(nd \log n)$

(iii) If $a > bd$, $f(n) \approx O(nd \log n)$

(book work)

d) We have
$$f(n) = 3f(n/2) + \theta(n)$$

a>bd

so $f(n) \approx O(n\log 3)$

so $f(n) \approx O(n\log 3)$

an expressed on the $\theta(n^2)$

an expressed on the $\theta(n^2)$

(NEW COMPUTED